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Abstract 

In recent years, advances in computing power and computational methods have 

made it possible to perform detailed simulations of the coronary artery stenting 

procedure and of related virtual tests of performance (including fatigue resistance, 

corrosion and haemodynamic disturbance). Simultaneously, there has been a growth 

in systematic computational optimisation studies, largely exploiting the suitability of 

surrogate modelling methods to time-consuming simulations. To date, systematic 

optimisation has focussed on stent shape optimisation and has re-affirmed the 

complexity of the multi-disciplinary, multi-objective problem at hand. Also, surrogate 

modelling has predominantly involved the method of Kriging. Interestingly, though, 

optimisation tools, particularly those associated with Kriging, haven’t been used as 

efficiently as they could have been. This has especially been the case with the way 

that Kriging predictor functions have been updated during the search for optimal 

designs. Nonetheless, the potential for future, carefully posed, optimisation 

strategies has been suitably demonstrated, as described in this review.  

Key terms: computational, modelling, Kriging, multi-objective optimization 
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INTRODUCTION 

Impressive engineering innovation and clinical expertise have made it possible to 

routinely deliver stents in narrowed coronary arteries such that these tubular 

structures can be expanded into atherosclerotic plaques to recover arterial flow area. 

In clinical terms, the aim is to maximise the minimum lumen area (MLA) by achieving 

the optimal minimal stent area (MSA). Furthermore, considering that stenting (or 

percutaneous coronary intervention, PCI) is procedurally successful in the majority of 

cases, this suggests that state of the art stents and delivery systems may have 

reached close to design optimality for delivery. Is it possible, or even necessary, 

therefore, to improve the PCI toolkit, including stents, delivery systems and/or 

imaging? A key driver in answering these questions is that clinical events, 

representing later complications (i.e failures) of the stent, such as stent thrombosis 

(ST) or restenosis, are more likely in circumstances in which stent expansion is 

suboptimal. Sub-optimal stent deployment is an independent risk factor for both 

restenosis and stent thrombosis. Restenosis, an exaggerated inflammatory healing 

response to the vessel injury inherent to PCI, results in recurrent angina or heart 

attack. It occurred clinically in around 10% of patients after bare metal stents and the 

incidence is now a few percent in the days of drug-eluting stents (DES). The minimal 

stent area is inversely related to the incidence of these complications (Caixeta et 

al.).Given the millions of stent deployment procedures being carried out worldwide, 

even rates of complications in low single digit percentages of the total represents a 

large cohort of patients. In this context, there is clearly room for improvement in the 

precision of stent delivery and optimisation. 

If further advances are to be made, how likely is it that computational engineering will 

be utilised more significantly than it has been in the development of PCI technology 
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to date? Curiously, the earliest simulations of stent expansion performance only 

began to appear in the literature (Dumoulin and Cochelin, Etave et al. and 

Migliavacca et al.) at the time that the first generation of drug eluting stents were 

undergoing clinical trials (Morice et al. and Moses et al.). These early finite element 

analysis (FEA) studies focussed on stent structures and neglected the fundamental 

interactions that occur during deployment between the stent, balloon and vessel 

wall/tissue. Even the earliest FEA studies that included idealised stenotic artery 

models, didn’t incorporate balloons to expand the stent, using pressure on the 

internal surface of the stent, instead (Auricchio et al.). It wasn’t until 2008 that 

patient-specific artery reconstructions were first used in simulations of stent 

deployment (Gijsen et al.). The review of computational structural modelling of 

coronary stent deployment by Martin and Boyle provided a detailed consideration of 

this history and there was a review of computational fluid dynamics (CFD) prediction 

of neo-intimal hyperplasia (or restenosis) in stented arteries by Murphy and Boyle. 

Subsequently, Morlacchi and Migliavacca reviewed numerical modelling of stented 

coronary arteries more generally, including FEA, CFD and drug elution. 

At the same time that the first stent deployment studies were appearing in the 

literature, Stoeckel et. al. published a survey of stent designs in which approximately 

100 different stents were identified. Whilst commenting that such diversity was 

largely the result of commercial drivers, they also acknowledged that conflicting 

design requirements underpinned the competition to optimise scaffolding 

characteristics, largely in terms of radial strength and flexibility. Why is it that, since 

that time, there has been an increasing frequency of stent related optimisation 

studies appearing in the academic literature?  
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This article focuses on answers to the above questions primarily from the 

perspectives of what has already been reported on systematic coronary artery stent 

design optimisation and, more especially, that which might now be possible. There 

are a number of articles comprising parametric studies (e.g. He et al., Wang et al. 

and Conway et al.) but they haven’t been considered in detail here due to the focus 

on systematic optimisation approaches. It should be acknowledged, however, that 

these types of study often help to inform more detailed searches for optimal designs 

(De Beule et al.). 

Starting with a consideration of clinically optimal stenting, attention is drawn to the 

causes of PCI failure and poor outcomes. An overview is then presented of 

measures of performance (or objective functions) that can be evaluated 

computationally, in preparation for a review of the design optimisation of coronary 

artery stent systems. The article is concluded with some recommendations for future 

work. 

CLINICALLY OPTIMAL OUTCOMES 

In the 2011 ACCF/AHA/SCAI1 PCI guidelines, an angiographic benchmark for stent 

results was defined by a minimum percent diameter stenosis of <10%, or optimally 

as close to 0% as possible (Levine et al.). This is re-iterated in the 2013 update on 

clinical competencies for PCI but with recognition that angiography provides “an 

imperfect assessment of coronary structure and stenosis severity” (Harold et al.). 

Thus, it is recommended that “other diagnostic modalities such as intravascular 

ultrasound (IVUS) and fractional flow reserve should be available” during PCI. 

                                                           
1 ACCF/AHA/SCAI: American College of Cardiology Foundation/American Heart Association/Society 
for Cardiovascular Angiography and Interventions 
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Indeed, Yoon and Hur (2012) highlight four criteria for optimal stent deployment 

when using IVUS: 

a) Complete stent expansion; 

b) Complete stent apposition to the vessel wall; 

c) Avoidance of edge dissection and 

d) Complete lesion coverage. 

Criteria 1-3 are depicted in Fig. 1 as they might appear in IVUS slices and aligned 

with a longitudinal cartoon to show where along a stented segment they are likely to 

occur. In practice, sub-optimal performance in terms of stent under-expansion and 

malapposition can be addressed by post-dilatation in which a non-compliant balloon 

is inflated inside the partially deployed stent so as to overcome the failings of the 

original stenting procedure. Whilst it is important for the interventional cardiologist to 

have methods such as post-dilatation to correct shortcomings of an initially sub-

optimal stent expansion, this can introduce other dangers including tissue dissection, 

longitudinal stent deformation and changes to stent fatigue resistance. An example 

of malappostion and post-dilatation is shown in Fig. 2 as obtained using the more 

recently developed intravascular imaging technique of optical coherence tomography 

(OCT). 

Although PCI is now a relatively mature practice, there are two areas in which 

computational modelling might result in improved stent deployment: (1) preclinical 

testing of modern iterations of stents and (2) design of novel stent/delivery system 

characteristics. 
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COMPUTATIONALLY MEASURABLE OPTIMALITY 

Overview 

Procedural optimality as defined above is largely unequivocal and can be measured 

using intravascular imaging methods. However, there are other metrics of stent 

performance that are not readily obtained during PCI but which can have a very 

significant influence on PCI outcome. These metrics include: 

a) Radial (and longitudinal) strength; 

b) Fatigue resistance; 

c) Flexibility; 

d) Stent malapposition; 

e) Tissue damage; 

f) Drug distribution (for DESs) and 

g) Flow metrics, particularly related to flow disturbance and the wall shear stress 

environment. 

Whilst it is possible to selectively combine any of these metrics in research studies, 

regulatory guidance by the Food and Drugs Administration (FDA) on non-clinical 

engineering tests provides a long list of recommendations primarily based on 

mechanical and structural attributes (FDA, 2010). Whilst measures of performance 

could be defined and simulated for all of the FDA recommended tests, the focus here 

is primarily on those that have featured in reported optimisation studies. Indeed, 

some of these (e.g. tissue damage, drug distribution and flow disturbance) don’t 

appear in the FDA recommendations or in the draft update of 2013. 
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FEA and CFD are the two principal simulation disciplines that are employed to 

generate these measures of stent performance. Other physical models have been 

used (e.g. corrosion modelling by Grogan et al. and drug kinetics by Bozsak et al.) 

but the majority of optimisation studies have employed FEA to obtain structural 

metrics including recoil, radial strength, foreshortening, flexibility, malapposition, 

fatigue resistance and tissue stress. Others have focussed solely on CFD 

simulations to extract and compare wall shear stress metrics. A small number of 

articles have reported multi-disciplinary optimisations wherein a stent deployment 

simulation using FEA is followed by a CFD blood flow simulation through the 

deformed vessel and over the expanded stent and/or by a drug elution simulation 

using a CFD based scalar transport model. 

FEA and structural optimality 

One way to characterise the various optimisation studies is to consider the level of 

detail included in the simulation models. For example, the majority of FEA studies 

have used single unit stent models, completely neglecting interaction with arterial 

tissue. Others have used high levels of detail including full three-dimensionality and 

models for a complete balloon delivery system and a diseased artery with contact 

interactions between balloon, stent and tissue (Pant et al. and Grogan et al.). 

In addition to the review by Martin and Boyle, Migliavacca et al. provided a succinct 

overview of early FEA studies of stent behaviour and performance. Notable among 

them was the two-dimensional study by Rogers et al. who focussed on the need to 

minimise vascular injury during stenting. This work is particularly pertinent since it 

addressed vascular injury induced by balloon contact forces combined with stent 

strut lacerations with the aspiration to optimise long-term outcomes for patients. 
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Whilst Rogers et al. focussed on clinical effects, Migliavacca et al. noted that FEA 

could be used in the optimisation of coronary stents by investigating the effects of 

different geometrical parameters on mechanical performance. Indeed, nearly all 

stent optimisation studies have employed geometry variation to define the 

optimisation design parameters including strut width, strut thickness, strut length, 

crown curvature, connector shape and a range of other shape variables set up to 

generate more complicated cell shapes. A detailed consideration of structural 

metrics as used in optimisation is provided in Supplementary Material A but the 

following key elements are noted here for certain metrics that: (i) should be checked 

globally along the stent and in the tissue but for which, numerically, single values are 

needed for optimisation; (ii) can be obtained numerically and/or experimentally (e.g. 

radial strength); (iii) have not been used in optimisation studies since they have been 

only recently defined (e.g. longitudinal stent deformation); (iv) have been under used 

(e.g. fatigue resistance) and (v) are difficult to quantify (e.g. tissue damage). 

CFD and transport: flow and drug optimality 

CFD based coronary artery stent optimisation has featured in six key studies 

(Atherton & Bates, Blouza et al., Srinivas et al., Pant et al. (2011), Gundert et al. and 

Amirjani et al.). Similarly to FEA studies, these can be characterised by simulation 

detail. Atherton & Bates used a simplified model involving steady state 3D CFD for 

single stent units whilst Blouza et al. and Srinivas et al. applied steady state 2D CFD 

over displaced strut cross-sections. Gundert et al. and Amirjani et al. employed 

pulsatile and steady state 3D CFD, respectively, but both used idealised vessels and 

stents constructed in expanded configurations from a repeating cell unit. With further 

complexity, Pant et al. (2011) performed pulsatile 3D CFD through representative 

diseased vessels deformed using FEA stent deployment simulations. Further, 



10 
 

Atherton & Bates, Srinivas et al. and Gundert et al. only considered flow optimality 

whereas the others adopted a multi-disciplinary approach.  

To capture the effect of flow on arterial walls, metrics are needed that can be 

minimised with respect to the flow disturbance caused by the presence of stent struts 

embedded in an irregular arterial wall boundary. This is based on the assumption 

that an optimal flow environment exists for a smooth vessel in the absence of a 

stenosis. Gundert et al. extracted time averaged wall shear stresses that were 

averaged over the arterial surface exposed to flow in the central rings of the stents. 

Blouza et al. and Srinivas et al. considered multi-objective optimisation, respectively, 

for two metrics (steady state wall shear stress and swirl) and three metrics (vorticity, 

recirculation distance and reattachment lengths between struts). Atherton & Bates 

calculated power dissipation as a surrogate for wall shear stress. 

Pant et al. (2011) devised a haemodynamic low and reversed flow index (HLRFI), as 

a function of regions where wall shear stress was below a prescribed level or 

reversed relative to the main flow direction. HLRFI was minimised to reflect the fact 

that strut distribution can influence the extent of disturbed flow on the arterial wall. 

Similarly to tissue damage, the efficacy of drug delivery can be defined by a volume 

averaged concentration, which needs to be maximised. Drug concentration can be 

calculated within the tissue by solving a CFD-based transport equation for drug 

concentration or through heat transfer equations in FEA solvers. However, 

optimisation of drug delivery has been considered in far more significant detail by 

Bozsak et al. Solely focussing on the drug kinetics of sirolimus and paclitaxel, a 

single measure of performance was derived to combine drug efficacy in the media 

with an average toxicity metric across the lumen, sub-endothelial space and the 
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media and penalised by a buffer term to avoid drug concentrations close to the 

toxicity limit. Notably, optimal paclitaxel-eluting stents were identified with far lower 

concentrations than existing DESs and designed to release the drug either very 

rapidly or very slowly (up to 12 months). 

Multi-disciplinary optimality 

The procedural and long-term efficacy of PCI is known to be dependent on a wide 

range of factors related to structural performance, haemodynamics and the bio-

chemistry of disease, inflammation, drug delivery and healing. Patient-specificity with 

respect to anatomy and disease is also important. Although no optimisation study to 

date has included more than six separate objectives, obtained from multiple 

disciplines, it is encouraging that a small number of studies have successfully 

demonstrated that it is possible to conduct high fidelity multi-disciplinary optimisation. 

Pant et al. (2011) and Amirjani et al. conducted FEA and CFD simulations to 

generate a range of multi-disciplinary objectives. Amirjani et al. combined stent and 

tissue stress metrics with stent recoil and a flow induced wall shear stress metric in a 

single aggregated objective function. 

Pant et al. (2012) used structural deployment and flexibility objectives with a drug 

elution metric in a constrained optimisation study in which optimal designs were 

found for each metric without diminishing any other metric. It was only in Pant et al. 

(2011) that structural (stent recoil and tissue stress), flow and drug elution metrics 

were used in a fully multi-disciplinary, multi-objective framework. 
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Although CFD wasn’t included in the study by Grogan et al., multi-disciplinary 

optimisation was performed by coupling a corrosion algorithm to FEA of a stent 

system that was tested for radial collapse strength. 

OPTMIZATION FRAMEWORK – THE STENT DESIGN CHALLENGE 

Overview 

Having discussed stent optimality from both clinical and mechanical engineering 

perspectives, different ways of framing stent optimisation studies is now considered. 

Whatever method is used, there are four key, common elements: 

a) Design variables which are the inputs (often geometry parameters) to be 

varied; 

b) The objective function comprising one or more quantified measures of 

performance that can be used to compare different designs; 

c) Constraints defining regions of the design space that cannot be included – 

lower and upper bounds are needed for the design variables and it may be 

necessary to specify values of derived quantities that must satisfy prescribed 

equality or inequality constraints; 

d) An optimisation algorithm in which, simply stated, the optimiser needs to find 

a combination of design variables that are optimal with respect to the 

objective function subject to satisfying the specified constraints. 

Generally, these separate elements should be considered simultaneously such that 

the design variables and the objective function(s) are defined appropriately for a 

given problem and for a particular optimisation algorithm. For example, if considering 

flexibility, design variables for the connectors should be included. With respect to the 
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optimisation, whilst it might be possible to have many (>10) design variables when 

optimising a single strut using a direct search method such as a genetic algorithm, it 

is advisable to reduce the number of inputs when using computationally expensive 

full stent deployment simulations within a response surface modelling approach. 

Design variables 

In the optimisation studies considered here, the largest number of design variables 

was seven in Grogan et al. and Wu et al. (2010), and most reported research has 

used three or four variables. Strut width is the most commonly included design 

variable and strut thickness (measured radially), strut length and parameters to 

control crown shape are also relatively common. More detailed control of stent unit 

shapes has been considered by Clune et al. using a set of NURBS weights, by 

Grogan et al. with various strut lengths and heights and by Wu et al. (2010) with a 

variety of strut widths and arc radii. When flexibility has been of interest, design 

variables have been used for the connectors as in Pant et al. (2011 & 2012). In 

cases when haemodynamic optimality has been sought, Atherton & Bates and 

Gundert et al., the angle of struts to the flow has been included. In contrast to the 

majority of studies that employ shape optimisation, Bozsak et al. considered only 

drug kinetics design variables: the initial drug concentration and the drug release 

time. 

Objective functions (a multi-objective, multi-disciplinary problem) 

Whilst most optimisation studies have incorporated multiple objectives, some earlier 

articles considered a single objective function. Atherton & Bates used power 

dissipation as a surrogate for wall shear stress and Harewood et al. focussed on 

radial stiffness of a single ring. More recently, Li et al. (2013) sought to just focus on 
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stent dog-boning. When considering multiple objectives, the majority of studies have 

either combined them in a single weighted objective function (Timmins et al., Li et al. 

(2009), De Beule et al., Amirjani et al. and Bozsak et al.) or have endeavoured to 

construct and search the Pareto fronts generated by treating each objective 

separately. One of the earliest attempts to do this by Blouza et al. used the multi-

objective evolutionary optimisation algorithm by Deb et al. (2003) to analyse the 

trade-off between wall shear stress and swirl within a two-dimensional flow 

disturbance model of stent struts. Similarly, Srinivas et al. sought to minimise 

vorticity and recirculation distances whilst maximising the reattachment length 

between struts. 

More advanced incarnations of this approach, using the non-dominated sorting 

genetic algorithm, NSGA II by Deb et al. (2002), have been adopted by Pant et al. 

(2011) for six objectives (obtained from multi-disciplinary structural, haemodynamic 

and drug elution simulations) and by Clune et al. for the trade-off between fracture 

resistance and flexibility. Finally, multiple objectives have also been incorporated in 

slightly different ways by Wu et al. (2010) and by Pant et al. (2012). In the former, 

the dual objectives of maximum principal strain and mass of material were treated in 

a two stage process of maximising mass once the maximum principal strain had 

been minimised. In contrast, Pant et al. (2012) used constrained single objective 

optimisation to separately minimise one of four objectives in turn, constrained by the 

requirement for the other objectives not to deteriorate. 

A key issue related to the treatment of multiple objectives concerns the trade-off 

between measures of performance that are in competition. When using a weighted 

single objective function the balance between objectives can be controlled by the 

values of the weights. This approach is exemplified by Timmins et al. who assessed 
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different weight combinations to generate stent designs optimised for critical tissue 

stress, luminal gain or cyclic radial deflection. Further, discussion of “lesion-specific 

stenting” alluded to the possibility of maximising minimum lumen area at the expense 

of high wall stress for stiff, calcific plaque by having lower distances between stent 

rings in contrast to the minimisation of wall stress for softer lipid type lesions by 

having wider strut spacing.  

Various paradigms for stent selection were considered by Pant et al. (2011). Fig. 18 

from that work is reproduced in Fig. 3, depicting the trade-off between recoil and 

volume averaged stress and how a design based on the Cypher® platform was 

predicted to be biased towards low recoil at the expense of potential tissue damage. 

A conservative approach to selection would seek designs closest to the so-called 

utopia point (located at the lowest values of the respective objectives). However, 

noting that six objectives were considered (and other important measures of 

performance were neglected) a more experiential paradigm would suitably bias 

selection to the specificity of a particular patient and lesion. Indeed, the rigid, closed 

cell design of the Cypher® platform is emblematic of the fact that minimal recoil and 

maximal radial strength were likely to have been the prominent considerations when 

it became the PCI work-horse in the first generation of drug-eluting stents. 

Constraints 

All systematic optimisation studies require constraints on the design variables. These 

constraints are commonly referred to as bounds and act to define the design space 

of the problem. For example, when varying strut width, the lower and upper bounds 

define/constrain the range of variation of strut width during optimisation. Other 

constraints are typically imposed on a problem such that certain requirements aren’t 
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violated. Most constraints used in coronary stent optimisation studies have been 

based on structural requirements. Harewood et al. applied constraints on the mean 

magnitude of the principal tensile stresses during pressure loading and bending and 

the difference between them. In this way, radial stiffness was maximised without 

compromising fatigue resistance. 

The application of constraints can be implied as well as in the two stage process by 

Wu et al. (2010). De Beule et al. sought to reduce foreshortening by 20% whilst 

maintaining radial stiffness relative to the reference geometry of a self-expandable 

braided stent. 

Only four studies have been identified that applied constraints directly during 

optimisation. In addition to Pant et al. (2012), (i) Wu et al. (2008) combined a 

constraint on the drug holding capacity of a Conor stent (Conor Medsystems 

Inc.) with manufacturing constraints related to the extrusion of strut geometry and 

minimum member size control, to optimise strut stiffness; (ii) Azaouzi et al. optimised 

fatigue resistance of a nitinol stent with constraints on the minimum radial force that 

it could support and on the maximum strain amplitude when exposed to a 

physiological pulse and (iii) Bozsak et al. penalised the objective function by 

introducing a term to keep eluted drug concentrations away from a predefined 

toxicity level. 

Optimization methods 

Due to the long computational times needed to simulate stent performance, the 

majority of coronary artery optimisation studies have adopted a surrogate modelling 

approach in which response surface models (RSMs) have been constructed to 

represent the relationship between objective functions and design variables. Simply 
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stated in the current context, a RSM is a surface fit of one or more measures of 

performance against multiple design variables. Earlier RSM optimisations (Harewood 

et al., Li et al.(2009) and Wu et al. (2010)) used polynomial based least squares 

functions but more recent studies have adopted Gaussian Process Models, 

commonly referred to as Kriging (Jones) after the South African geo-statistician, D. 

G. Krige (Krige). Before describing Kriging in more detail below, optimisation using 

RSMs is described in general, with reference to Fig. 4. 

At the start of a study, it is necessary to setup a baseline model (1), the definition of 

the problem (2) and the simulations that are to be performed (dashed box). Then, an 

initial RSM is constructed (3) from a sample of design points defined by a design of 

experiments (DoE). The DoE may be generated randomly but a number of methods 

have been developed with better space filling properties, e.g. optimised Latin 

hypercubes (Morris and Mitchell, Forrester et al.) and 𝐿𝐿𝐿𝐿𝜏𝜏 (Statnikov and Matusov). 

For each point, simulations are performed to evaluate measures of performance (4). 

The construction of the RSM (5) involves the derivation of a function from the values 

of the objective function obtained for a set of design variables (defined by the DoE 

for the initial sample). In a multi-objective problem, separate RSMs are constructed 

for each objective and, similarly, in a constrained optimisation, separate RSMs can 

be constructed for each constraint.  Importantly, RSMs only provide a prediction of 

the complete response of the system and, since the goal of the optimisation method 

is to find optimal designs, it is likely to be necessary to improve the accuracy of the 

RSM before determining an optimum. RSMs are improved (or updated) by 

generating new design point data (or updates) at appropriate locations in the design 

space (6). Updates are generated by searching the current RSM and running further 

simulations at appropriately selected design points to obtain the value(s) of 
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objective(s) at these new points (7). This process can be repeated until a 

convergence criterion has been satisfied (8) or a computational budget exhausted. 

The accuracy/quality of the RSM can be evaluated/validated using cross-validation 

methods that sequentially compare predictions of at least one data point from RSMs 

constructed from the data-set with this (these) point(s) excluded. The use of leave 

one out and standard cross validation residual plots was demonstrated in Pant et al. 

(2012). An alternative, brute force approach can be applied, if affordable, by running 

additional simulations to generate new validation data. This was done by Harewood 

et al. in which a RSM constructed from a sixty point DoE was validated (and 

enhanced) by a separate twenty point DoE. 

Kriging 

There are a number of advantageous features of Kriging that make it particularly 

suitable for surrogate modelling and optimisation of engineering problems. Given a 

set of inputs and experimentally obtained outputs, the Kriging predictor: 

a) Comprises a linear combination of tuneable basis functions; 

b) Interpolates the data; 

c) Has a statistical interpretation from which the mean squared error (MSE) of 

the predictor can be formulated and 

d) Yields additional functions, including the expected improvement (EI), which 

can be used to enhance the search for optimal designs. 

Both the MSE and the EI are particularly useful for defining update points when it is 

necessary to improve the accuracy of the predictor. 
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Derivation of the Kriging equations can be found elsewhere (Jones) but the predictor 

is described in Supplementary material B.  

Srinivas et al. performed possibly the first Kriging based optimisation of coronary 

stents using a simplified 2D, steady-state flow model. With a three-dimensional Latin 

hypercube DoE for strut width, thickness and spacing, Krigs were constructed for 

three metrics from which non-dominated optimal designs were found. Evidence for 

the subsequent use of Kriging for the optimisation of coronary stents is sparse until 

Pant et al. (2011) constructed separate Krigs for six objective which were used in an 

NSGA II search of the design space. A sequence of three parallel updates was 

performed in which five designs were selected from the non-dominated Pareto front 

for each set of updates. New Krigs were constructed following the generation of data 

for each update. Starting from a fifteen point 𝐿𝐿𝐿𝐿𝜏𝜏 DoE, the three updates produced a 

total sample size of thirty points. 

Gundert et al. determined haemodynamically optimal stent geometries using the 

MATLAB DACE2 implementation of Kriging (Lophaven et al.) within a pattern search 

algorithm based on the Surrogate Management Framework described by Booker et 

al. A single design parameter (the intra-strut angle) was optimised for a single 

objective (the area of low time averaged wall shear stress) for a range of intra-strut 

areas and numbers of circumferential units. Starting with a Latin hypercube DoE, 

most runs converged within 10-15 function evaluations and the optimal intra-strut 

angle was found to be independent of both vessel size and the intra-strut area of the 

stent cell. 

                                                           
2 DACE: Design and analysis of computer experiments 
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Update points in Gundert et al. were identified from the predicted optima following a 

search of the RSM. The equivalent to this in the multi-objective problem is to select 

non-dominated points on the Pareto front as demonstrated by Pant et al (2011). 

However, as noted above, Kriging usefully provides alternative means for generating 

update points. Since the EI function blends exploration and exploitation, used 

repeatedly, it simultaneously improves the accuracy of the RSM throughout the 

design space and enhances the search for optimum designs. Grogan et al. and Li et 

al. (2013) used EI updates in their single objective optimisations for maximum radial 

strength and minimum dog-boning, respectively.  

Grogan et al. performed an impressive number of simulations, running five separate 

optimisations, each starting from a different 28 point Latin hypercube DoE followed 

by 122 EI updates. It isn’t clear why the separate optimisations were performed or 

whether the problem warranted so many updates. Multiple runs are often performed 

when assessing the mean and variance of an optimisation strategy but that wasn’t 

the case in Grogan et al. Experience suggests that approximately 70 simulations 

would have been sufficient (i.e. ten times the number of design parameters) even 

though there was greater than 6% variation in the optimum designs found from the 

five optimisations.  It’s possible that mesh related issues compromised convergence 

and it may have been advisable to force the Krig to regress the potentially noisy 

data. The DoE size of 28 points was well judged for seven design variables but it 

should be possible to run smaller numbers of updates. 

More modest numbers of EI updates were used by Li et al. (2013) for four slotted 

tube design parameters in four deployment simulation scenarios, the maximum 

number of updates being 22. Despite using a simplified stent model, shape 

optimisation using Kriging successfully led to designs with reduced dog-boning.  



21 
 

Similarly to Gundert et al., Bozsak et al. used Kriging in a surrogate modelling 

framework but, during the search steps, update points were identified by maximising 

the probability of improving a current optimum by a prescribed margin. 

In contrast to the aforementioned approaches to RSM updating, two other studies, 

both with a focus on shape optimisation of a single crown unit for the maximisation of 

fatigue resistance, have avoided using updates. Azouzi et al. adopted a trust-region 

strategy in which successive RSMs were constructed for increasingly smaller design 

space samples centred on optimal locations found from each search. Starting from a 

very large volume design of a Nitinol strut, five iterations were needed to reduce strut 

volume by 78% whilst satisfying constraints on the minimum outward force of the 

complete structure and the maximum value of the strain amplitude for all elements. 

As one of the few examples of RSM-based coronary artery stent optimisation studies 

to directly apply constraints, it is useful to note that separate Krigs were constructed 

for each constraint. 

Updates can also be completely avoided by committing to an exhaustive number of 

points as undertaken by Clune et al. in a randomly generated Latin hypercube DoE 

for six geometry design variables. A Pareto front was successfully generated to 

represent the trade-off between fatigue resistance and flexibility. Using the MATLAB 

implementation of NSGA II, a range of designs was depicted along the front. 

Although very high accuracy was demonstrated for the respective RSMs using 

cross-validation, it would be interesting to determine the minimum number of designs 

that would actually be needed to achieve a similar level of predictive accuracy. 

From this review of the literature, it would appear that, despite the increasing use of 

Kriging in coronary artery stent design, Krig tuning is hidden from and/or overlooked 
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by many users. Also, there is limited evidence for the efficient use of updating 

strategies. 

FUTURE CHALLENGES AND OPPORTUNITIES 

The emergence over the last ten years of systematic numerical optimisation of 

coronary artery stent design has been catalysed by advances in: 

a) Surrogate modelling using response surface models, particularly Kriging; 

b) Numerical modelling of structural performance using FEA and 

c) Computing power and resources. 

Taken together, these three elements have made it possible to perform multiple, 

detailed (and computationally expensive) simulations of stent behaviour as described 

by Pant et al., Grogan et al. and Bozsak et al. However, the majority of other 

reported studies have introduced significant simplifications into the numerical 

models, often involving the simulation of single crown units, that don’t necessarily 

require high performance computing resources. Therefore, although it might be 

technically feasible to design bespoke, patient-specific coronary stents using detailed 

3D simulations, the required computational run-times are likely to render such an 

approach unusable in the catheter-laboratory for the foreseeable future. Further, 

even if simplified models that can be solved quickly could be used in this way, 

regulatory approval is likely to act as a significant barrier. What remains to be seen is 

how detailed and simplified approaches to stent optimisation could be used to 

address the low percentage of PCI cases that have sub-optimal outcomes. 

Potentially, novel stent characterisations could be developed that are optimised for 

sub-sets of challenging patient cases. Another area to explore concerns optimisation 

of the delivery system wherein, for example, balloon unpressurised diameter and 
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inflation pressure could be optimised to balance strut malapposition against tissue 

damage. Other biological endpoints could also be targeted through pre-clinical trials, 

for example, aiming to minimise inflammation and/or restenosis. One of the biggest 

challenges in these areas concerns the need and value of validating computational 

predictions with in vitro experiments, pre-clinical and clinical findings and, ultimately, 

with clinical practice. Finally, since Kriging appears to be becoming a favoured 

optimisation technology, the knowledge gained as applied to coronary artery stents 

should be applicable to the design of bifurcation stents and bifurcation stenting 

protocols, heart valve frames, peripheral stents and other biomedical devices. 

CONCLUSIONS 

Common to the design optimisation of coronary artery stent systems considered 

here are the facts that: 

a) The great majority of design variables have been geometric; 

b) Only a subset of performance measures have been considered in each case; 

c) Host vessel geometry has been, at best, idealised and often neglected 

completely; 

d) Surrogate modelling using Kriging has become the dominant optimisation 

framework. 

It is also clear that the growth in optimisation studies, often using Kriging, is a 

relatively recent phenomenon. Consequently, despite a range of weaknesses and 

limitations, the work to date has revealed a large array of opportunities for further 

systematic optimisation of coronary artery stenting, including enhanced accuracy of 

computational modelling, more efficient surrogate modelling, patient-specific device 

optimisation and the challenges of solving a complex, multi-disciplinary, multi-
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objective problem. Using these methods it will be possible to design new iterations of 

stents and/or novel stent/delivery system characteristics. Ultimately, the aim of 

computational modelling applied in these ways is to facilitate clinical optimality for 

more patients in all interventional procedures. 
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FIGURES 

 

Figure 1. (Figure 2 in Yoon and Hur) Stent-related complications after stent 

deployment. Reprinted with permission from the Korean Association of 

Internal Medicine. 

  



 

Figure 2. (Figure 1C in Johnson et al.) OCT image of an under-expanded stent 

(left). The same stent segment seen after post-dilatation, now completely 

apposing the vessel wall (right). Reprinted with permission from Springer. 

 

 

 

 

 

 



 

Figure 3. (Fig. 18 in Pant et al. (2011)). Final Pareto front slice showing the 

trade-off between volume average stress (VAS) and acute recoil (Recoil). 

Reprinted with permission from Elsevier. 

 



 

 

Figure 4. Flow-chart of the response surface modelling approach to coronary 

artery stent optimisation. 

 



Supplementary material A 

FEA and structural optimality 

Radial (and longitudinal) strength, recoil, flexibility and fatigue resistance can be 

calculated using FEA simulations. It’s worth noting that these structural metrics can also 

be determined experimentally and that, before computing power and software capability 

made it feasible to run computational experiments, laboratory testing provided the only 

means of obtaining these metrics.  

Radial strength can be obtained by applying an additional step at the end of a 

deployment simulation. An inward pressure can be applied to the outer surface of the 

deformed stent, isolated from the arterial model, such that node displacements are 

measured and the radial strength is determined as the pressure at which a critical 

displacement gradient is generated (equivalent to the FDA’s definition of irrecoverable 

deformation). Elastic recoil and stent foreshortening should be mentioned here, as well, 

since both of these metrics can be evaluated during the expansion step of a simulation. 

The FDA recommends that recoil should be calculated as the change in diameter from 

peak balloon inflation pressure to post balloon deflation, as a percentage of the 

expanded diameter. While it also recommends to check the recoil along the length of a 

stent, numerically, single values are needed for optimisation. Therefore, average recoil or 

maximum recoil should be used. Recoil (and foreshortening) can also be measured 

clinically using quantitative coronary angiography. 

Longitudinal strength can be quantified by applying a compressive force to the crowns at 

the end of a stent so as to determine the force needed to displace the stent a certain 

distance. This is the approach adopted experimentally in vitro by Ormiston et al. in 

response to the issue of longitudinal stent deformation (Hanratty and Walsh). Ragkousis 



et al. set up similar computational models and then applied FEA to validate their results 

against the laboratory experiments. They could then asses the effects of point loads 

applied to the malapposed struts of stent models deployed in a patient-specific diseased 

vessel. Although longitudinal strength has not yet appeared in any stent optimisation 

studies, it should appear in due course as a constraint on design variation if designers 

again push the envelope of feasible designs towards compromised longitudinal strength. 

Interestingly, fatigue resistance has been neglected in many of the optimisation studies 

that have appeared to date, despite the fact that it was the focus of one of the earliest 

reported FEA studies of a peripheral stent by Whitcher. The two articles that have sought 

to optimise stent strut design with respect to fatigue resistance, FR, Azouazi et al. and 

Clune et al., have simulated the cyclic loading of a stent unit from which the amplitude 

and mean variations of stress and strain were extracted for each element. Seeking to 

maximise FR, Azouazi et al. employed a constraint on strain amplitude to keep it below a 

value of 0.4% whilst Clune et al. evaluated fatigue resistance directly according to the 

Goodman number. 

Many of the early closed cell stent designs, including the Cypher platform (Cordis Corp., 

Johnson & Johnson Co.), were relatively rigid. Despite the overall strength of such 

designs, the accompanying lack of flexibility meant that they were superseded by more 

flexible open cell configurations. Flexibility is an important clinical metric both in terms of 

deliverability and conformability. In 2012, Pant et al. quantified flexibility by measuring the 

area under the graph of an applied moment versus a curvature index following 

application of a moment to a single stent unit. The curvature index was calculated from 

the ratio of the bending angle to the length of the single stent unit. In contrast, Clune et 

al. calculated flexibility from the average outward deflection of all nodes under an 

outward radial force (equivalent to 40mmHg) applied to the stent’s inner surface. 



Tissue damage during PCI occurs due to contact pressure from balloons used for 

angioplasty, stent expansion and post-dilatation, as well as from contact and lacerations 

caused by stent struts embedded in the arterial wall. The resulting inflammation is the 

major trigger for restenosis, recognition of which led to the development of DES. 

However, a definitive definition of tissue damage doesn’t exist. Consequently, 

researchers (c.f. Pant et al.) have largely defined volume average quantities for von 

Mises stress that can be evaluated by summing the stresses in all elements following 

FEA simulations of stent deployment (Holzapfel et al.). Volume averaged stress can then 

be defined as 

 𝑉𝑉𝑉𝑉𝑉𝑉 = ∑ 𝜎𝜎𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖=𝑛𝑛
𝑖𝑖=1
∑ 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖=𝑛𝑛
𝑖𝑖=1

 (A1) 

where von Mises stress, σ i and element volume, dVi, are combined for all n elements of 

the relevant domain. In an optimisation framework, designs are sought that minimise 

VAS. 

Hanratty, C., and S. Walsh. Longitudinal compression: a new complication with modern 

coronary stent platforms-time to think beyond deliverability. EuroIntervention 7:872–877, 

2011.  

Holzapfel, G. A., M. Stadler, T. Gasser. Changes in the mechanical environment of 

stenotic arteries during interaction with stents: computational assessment of parametric 

stent designs. J Biomech. Eng. 127:166–180, 2005. 
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insights into a clinical problem. JACC: Cardiovascular Interventions. 4:1310–7, 2011.  

Whitcher, F. D. Simulation of in vivo loading conditions of Nitinol vascular stent 

structures. Computers and Structures 64:1005–1011, 1997. 



Supplementary material B 

It is useful to specifically focus on the nature of the Kriging predictor and on the MSE with 

respect to the advantages described in the main article.  

At a prescribed set of n design points, the Kriging predictor can be written as 

 v�(𝐳𝐳∗) =  µ� + ∑ biφ(n
i=1 𝐳𝐳∗ −  𝐳𝐳i) (B1) 

representing the combination of a mean response, µ�, given by the equation 

 µ� = 𝟏𝟏′𝐑𝐑−𝟏𝟏𝐯𝐯

𝟏𝟏′𝐑𝐑−1𝟏𝟏
 (B2) 

and a summation of the predicted influences of each known design point, 𝐳𝐳𝐢𝐢, on the new 

point, 𝐳𝐳∗, at which a prediction is to be obtained. 𝐳𝐳𝐢𝐢 and 𝐳𝐳∗ are d-dimensional vectors, 

where d signifies the number of design parameters. In Eq. B2, 𝟏𝟏 = �
1
⋮
1
� is an n x 1 vector 

of ones, 𝐯𝐯 =  �
v1
⋮

vn
� is a vector of the values of the simulated data points and R is the n x n 

correlation matrix with each element (i, j) given by the Gaussian basis function 

 exp�−∑ Ѳ𝑙𝑙d
𝑙𝑙=1  �𝐳𝐳i𝑙𝑙 − 𝐳𝐳j𝑙𝑙�

p𝑙𝑙� (B3) 

The ability to tune the Krig derives from the hyper-parameters, pl and Ѳl which, 

respectively, control the smoothness and response activeness for each one of the d 

design parameters. Jones notes that this tuning capability is “the main reason Kriging 

often outperforms other basis-function methods in terms of prediction accuracy”. Usefully, 

it’s possible to automatically tune the hyper-parameters by maximising the concentrated 

log-likelihood function (CLF), a simplified version of the likelihood function which is only a 



function of R. In other words, a search can be performed on the CLF to find the optimal 

set of hyper-parameters that maximises the CLF. 

Returning to Eq. B1, each term in the summation of the predicted influences of the known 

design points on the design point to be predicted, is given by the weighted basis function 

 𝑏𝑏𝑖𝑖φ(𝐳𝐳∗ −  𝐳𝐳i) = 𝑏𝑏𝑖𝑖exp�−∑ Ѳ𝑙𝑙d
𝑙𝑙=1  |𝐳𝐳𝑙𝑙∗ −  𝐳𝐳i𝑙𝑙|p𝑙𝑙� (B4) 

where the weight, bi, denotes the ith element of 𝐑𝐑−1(𝐯𝐯 − 𝟏𝟏µ�). 

From the Kriging predictor, it is possible to derive a range of functions that can be used to 

improve the accuracy of the predictor and/or the search for optimum designs. Since the 

mean error features in these functions and it can be used directly to identify update 

points to improve predictor accuracy, the mean error is detailed here. Since Kriging is 

based on a Gaussian Process Model, the mean squared error (MSE) is given by 

 �̂�𝑠2(𝐱𝐱) =  σ�2 �1 −  𝐫𝐫′𝐑𝐑−1𝐫𝐫 +  (1− 𝐫𝐫′𝐑𝐑−1𝐫𝐫) 2

 𝟏𝟏′𝐑𝐑−1𝟏𝟏
� (B5) 

as derived by Sacks et al., where  

 𝐫𝐫 =

⎝

⎛
exp �−∑ Ѳ𝑙𝑙d

𝑙𝑙=1  |𝐱𝐱𝑙𝑙 − 𝐱𝐱1𝑙𝑙|p𝑙𝑙�
⋮
⋮

exp �−∑ Ѳ𝑙𝑙d
𝑙𝑙=1  |𝑥𝑥𝑙𝑙 − 𝐱𝐱n𝑙𝑙|p𝑙𝑙�⎠

⎞ = �

exp(− Ѳ1|x− x1|p1 −   Ѳ2|ϕ− ϕ1|p2)
⋮
⋮

exp(− Ѳ1|x − xn|p1 −   Ѳ2|ϕ− ϕn|p2)
� (B6) 

and 

 σ�2 = (𝐯𝐯−𝟏𝟏µ�)′𝐑𝐑−1(𝐯𝐯−𝟏𝟏µ�)
n

 (B7) 

signifies the optimal variance of the predictor; optimal in the sense that it has been 

determined following maximisation of the concentrated log-likelihood function. 



By combining the Kriging predictor and the mean error in a normal density function for 

the expectation of improving the prediction of an optimal point, it’s possible to derive a 

function for the expected improvement. Both the mean error and the EI can be used to 

configure convergence criteria but they are most useful when exploited for the 

specification of update points during search and optimisation. 

By way of example, the exact distribution of the Branin test function is shown in Fig. B1 

and a Krig prediction of the function is shown in Fig. B2 for an optimised Latin Hypercube 

initial sample of eight points. With less than eight points, the predictor fails to capture the 

valleys in a recognisable form. 

 

Fig. B1 Exact Branin function 



 

Fig. B2 Krig prediction of the Branin function using eight points (shown coloured red and 

the black point is the predicted minimum). 

The MSE and EI functions for the prediction shown in Fig. B2 are depicted in Figs. B3 

and B4, respectively. As expected, the MSE is zero at the predictions and increases in 

the spaces between them. Recalling that the EI combines exploration and exploitation 

(i.e. finding favourable locations), the “strongest” region of EI is located in the space 

between the predictions close to the minima. In both cases, update points could be 

selected at points that maximise the respective functions. When the initial sample size 

approaches twenty points, both MSE and EI become very small throughout the domain 

and are largest in the corners, something to be expected for an optimised Latin 

hypercube sample. 



 

Fig. B3 Mean square error for eight point Krig predictor. 

 

Fig. B4 Expected improvement for eight point Krig predictor. 

In Grogan et al., convergence may have been compromised by a mesh induced noisey 

objective function. There are a number of ways in which noise can be generated in 



objective function data and meshing issues are often responsible. When this is the case, 

it is possible to introduce regression into the Kriging model by adding a regression 

constant to the leading diagonal of the correlation matrix as described in Forrester et al. 

Care has to be taken when performing updates but this can be addressed as well 

(Forrester et al.). 

Optimisation software resources 

Within this review, the most commonly used software for optimisation appears to be the 

MATLAB DACE toolkit used, for example, by Clune et al., Gundert et al. and Li et al. 

(2013). Others (e.g. Li et al. 2009) have used the response surface models in ANSYS 

(for which further information is available online1). The surrogate management framework 

(Booker et al.) has been used by Gundert et al. and Bozsak et al. Grogan et al. used the 

open-source DAKOTA optimization toolkit (Sandia National Laboratories, USA). Another 

popular open source toolkit is pyOpt2. In-house toolkits were used by Pant et al. (2011 & 

2012). Commercially available dedicated optimisation software includes modeFrontier3 

that focusses on multi-objective and multi-disciplinary optimisation and Isight and the 

SIMULIA Execution Engine (formerly Fiper)4 containing a wide range of DoE, 

approximation and optimisation methods. 

Forrester, A. I. J., A. J. Keane, and N. W. Bressloff.  Design and Analysis of "Noisy" 

Computer Experiments.,AIAA Journal, 44(10): 2331-2339, 2006. 

Sacks, J., W. J. Welch, T. J. Mitchell and H. P. Wynn. Design and analysis of computer 

experiments. Stat. Sci. 4(4):409-423, 1989. 

 
                                                           
1 http://www.ansys.com/Products/Workflow+Technology/ANSYS+Workbench+Platform/ANSYS+DesignXplorer 
2 http://www.pyopt.org 
3 http://www.esteco.com/modefrontier 
4 http://www.3ds.com/products-services/simulia/products/isight-simulia-execution-engine/ 



Supplementary material C 

Future challenges and opportunities 

In certain respects, the relatively small body of coronary artery stent optimisation could 

be viewed as opportunistic and/or backwards-facing since state of the art coronary stents 

were developed before the related findings had been published. Also, many of the 

conclusions have simply reinforced what was already known. For example, it is not 

unexpected to discover that various performance metrics are in competition: tissue stress 

and elastic recoil; flexibility and fatigue resistance. Nor is it surprising that strut width has 

been shown to have a dominant effect on stent performance. As a counter to this 

negative perspective, a number of interesting findings have been reported including 

those related to haemodynamic disturbance, fatigue resistance and drug kinetics and, 

most positively, the research to date has laid the foundations for a number of notable 

future opportunities. 

In the survey of the modelling of stented coronary arteries, Morlacchi and Migliavacca 

concluded with an overview of new frontiers and arising clinical challenges. With respect 

to optimisation, this featured the suggestion that shape control could be used to improve 

the mechanical properties and degradation performance of the emerging family of 

biodegradable stents. Whilst this is certainly an interesting application, a more ambitious 

role for optimisation exists with respect to patient-specific stenting. Indeed, patient-

specificity featured strongly in the Morlacchi and Migliavacca review without being 

specifically stated in an optimisation framework.  

Patient-specific coronary artery stenting 

Since 2008, a number of articles have presented patient-specific cases wherein 

computational models of real diseased vessels have been constructed from segmented 



images and then used as the host vessel into which stent deployments have been 

simulated. A number are featured in Morlacchi and Migliavacca and other recent articles 

include Morlacchi et al. and Ragkousis et al. Having established this capability, it is now 

feasible to predict how new designs, existing designs and/or variants of existing designs 

might perform for a particular patient and disease. This suggests that computational 

modelling could be used in decision support, helping interventionalists select an 

appropriate device from those available in the catheter-laboratory. Indeed, the most 

suitable stent could be selected by using systematic optimisation to design an optimal 

device which is then compared to the available devices. Extending this notion further, it 

may be feasible in time to personalise and deploy bespoke stent systems that are 

manufactured, sterilised, coated and loaded onto catheters having been designed using 

the design, search and optimisation tools discussed here. 

Whilst it is already technically feasible to do this, it is unlikely to be possible to satisfy all 

necessary regulatory requirements without (a) advances in modelling accuracy, including 

the representation of arterial tissue and disease, and (b) detailed verification and 

validation of the modelling strategies that might be used in this way. Also, without marked 

speed-up in the computational run-times for detailed simulations, the time it takes to 

generate results will present a significant barrier to clinical acceptance and usability of 

this technology.  

Nonetheless, these issues present significant opportunities for computational engineers 

to work with clinicians to develop approaches to overcome them. A good starting point 

concerns clinically challenging cases that may have involved sub-optimal deployment 

outcomes and/or required remedial intervention (e.g. post-dilatation) to improve 

apposition and maximise MLA/MSA. Sufficient angiographic and intravascular imaging 

information will be needed to construct computational models of a patient’s diseased 



artery. Then, using a model of the stent actually deployed during PCI, a simulation will be 

performed and validated against the original clinical procedure. Using this simulation as a 

baseline, it will be possible to undertake optimisation studies to predict what could have 

been a more optimal outcome. Applied to a cohort of real patient cases, a virtual clinical 

study could be conducted, potentially leading to opportunities for novel stent 

characterisations, each one being better suited to certain sub-sets of patient cases. 

With a parallel perspective, Conway et al. presented a cogent argument for the 

development of a computational test-bed for the assessment of coronary stent 

implantation mechanics and how it could be used to modify and enhance the associated 

regulatory standards. For example, it was recommended to assess stent performance for 

a range of stenosis “to see if there is an optimum design for a given stenosis level.” 

Delivery system optimisation 

Since modern stents can be efficaciously and safely over-expanded, it may be more 

appropriate to design and select an optimal delivery balloon as an alternative to 

optimising a particular stent. Although compliance charts provide target expansion 

diameters for a range of pressures, based on a nominal target pressure, which can be 

used to guide procedural outcome, better PCI performance may be achievable for a 

particular patient by optimising the nominal balloon diameter and inflation pressure, for a 

given stent. Such a possibility emerged from the work by Ragkousis et al. as a means for 

minimising stent malapposition. Figs. C1 and C2 depict the final predicted states of a 

stent model (based on the Xience platform (Abbott Lab., IL, USA)) deployed in a patient-

specific case using different delivery systems. The nominal diameters and inflation 

pressures were 3.383mm and 8.42bar for the baseline system depicted in Figs. C1A and 

C2A, calibrated for a target diameter of 3.50mm using the AbbottVascular Instructions for 

Use document.  



   

Figure C1. Stent malapposition (mm) in a patient-specific coronary artery following 

balloon expandable stent deployment. Nominal diameters and pressures, respectively:  

A) 3.38mm and 8.42bar; B) 3.87mm and 12.91bar. 
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Figure C2. Tissue stress (MPa) in a patient-specific coronary artery following balloon 

expandable stent deployment. Nominal diameters and pressures, respectively:  

A) 3.38mm and 8.42bar; B) 3.87mm and 12.91bar. 

For the system shown in Figs. C1B and C2B, the diameter and pressure were 3.870mm 

and 12.91bar, respectively. The larger balloon, inflated at a higher pressure reduced 

stent malapposition by over 50% as measured using an area-averaged stent 

malapposition (AASM) index given by 

 𝑉𝑉𝑉𝑉𝑉𝑉𝐴𝐴 =   
∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝛿𝛿𝛿𝛿𝑖𝑖
𝑛𝑛𝑠𝑠
𝑖𝑖=1
∑ 𝛿𝛿𝛿𝛿𝑖𝑖
𝑛𝑛𝑠𝑠
𝑖𝑖=1

 (C1) 

A)  B)  



where ns denotes the total number of triangulated elements, SMi is the malapposition in 

the ith element given by the Euclidean distance between the centre point of the ith 

element and its projection to the lumen surface and 𝛿𝛿𝑉𝑉𝑖𝑖 signifies the area of the ith 

element. 

However, at the higher pressure, the stress in the tissue increases as shown in Figs. C2A 

and C2B. Quantitatively, the volume average stress, as defined in Eq. A1, more than 

doubles. From this comparison, the question emerges as to the optimum combination of 

un-pressurised balloon diameter and inflation pressure, as determined from the AASM 

and VAS, for this model of a diseased coronary artery. A multi-objective optimisation 

study could be performed in which an optimal combination of un-pressurised balloon 

diameter and inflation pressure is sought in the expected trade-off between these two 

metrics. The clinical implication of this approach is that a wider range of delivery system 

balloon catheters could be needed in the catheter-laboratory. 

Surrogate modelling 

Although Kriging has become the dominant choice for response surface modelling, it has 

largely been used with a lack of demonstrable insight into how the technique should be 

applied most efficiently. In particular, future optimisation studies involving expensive 

simulations need to employ best practice with respect to initial sample size, update 

strategies, hyper-parameter tuning and validation. Researchers need to better 

understand how to efficiently search for design improvement such that optimal designs 

are found with minimal effort.  

Further interest could also develop in novel uses of Kriging in the development of 

methods to speed-up the design process. Kolandaivelu et al. used Kriging to train a 

machine learning process that could predict high fidelity mesh solutions from coarse 



solutions when applied to the simulation of drug delivery to a coronary artery wall from 

both a stent and a drug eluting balloon. Drawing on evidence from other disciplines, there 

are also opportunities in the areas of uncertainty and robust design. 
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