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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Quantum-Assisted Multi-Objective Optimization of Heterogeneous Networks

by Dimitrios Alanis

Some of the Heterogeneous Network (HetNet) components may act autonomously for
the sake of achieving the best possible performance. The attainable routing performance
depends on a delicate balance of diverse and often conflicting Quality-of-Service (QoS)
requirements. Finding the optimal solution typically becomes an NP-hard problem, as the
network size increases in terms of the number of nodes. Moreover, the employment of user-
defined utility functions for the aggregation of the different objective functions often leads
to suboptimal solutions. On the other hand, Pareto Optimality is capable of amalgamating

the different design objectives by relying on an element of elitism.

Although there is a plethora of bio-inspired algorithms that attempt to address the as-
sociated multi-component optimization problem, they often fail to generate all the routes
constituting the Optimal Pareto Front (OPF). As a remedy, we initially propose an op-
timal multi-objective quantum-assisted algorithm, namely the Non-dominated Quantum
Optimization (NDQO) algorithm, which evaluates the legitimate routes using the concept
of Pareto Optimality at a reduced complexity. We then compare the performance of the
NDQO algorithm to the state-of-the-art evolutionary algorithms, demonstrating that the
NDQO algorithm achieves a near-optimal performance. Furthermore, we analytically de-
rive the upper and lower bounds of the NDQO’s algorithmic complexity, which is of the
order of O(N) and O(N+/N) in the best- and worst-case scenario, respectively. This cor-
responds to a substantial complexity reduction of the NDQO from the order of O(N?)
imposed by the brute-force (BF) method.

However again, as the number of nodes increases, the total number of routes in-
creases exponentially, making its employment infeasible despite the complexity reduction
offered. Therefore, we propose a novel optimal quantum-assisted algorithm, namely the
Non-Dominated Quantum Iterative Optimization (NDQIO) algorithm, which exploits the
synergy between the hardware parallelism and the quantum parallelism for the sake of
achieving a further complexity reduction, which is on the order of O(v/N) and O(Nv/'N)
in the best- and worst-case scenarios, respectively. Additionally, we provide simulation
results for demonstrating that our NDQIO algorithm achieves an average complexity re-
duction of almost an order of magnitude compared to the near-optimal NDQO algorithm,

while activating the same order of comparison operators.

Apart from the traditional QoS requirements, the network design also has to consider

the nodes’ user-centric social behavior. Hence, the employment of socially-aware load



balancing becomes imperative for avoiding the potential formation of bottlenecks in the
network’s packet-flow. Therefore, we also propose a novel algorithm, referred to as the
Multi-Objective Decomposition Quantum Optimization (MODQO) algorithm, which ex-
ploits the quantum parallelism to its full potential by exploiting the database correlations
for performing multi-objective routing optimization, while at the same time balancing the
tele-traffic load among the nodes without imposing a substantial degradation on the net-
work’s delay and power consumption. Furthermore, we introduce a novel socially-aware
load balancing metric, namely the normalized entropy of the normalized composite be-
tweenness of the associated socially-aware network, for striking a better trade-off between
the network’s delay and power consumption. We analytically prove that the MODQO algo-
rithm achieves the full-search based accuracy at a significantly reduced complexity, which
is several orders of magnitude lower than that of the full-search. Finally, we compare the
MODQO algorithm to the classic NSGA-II evolutionary algorithm and demonstrate that
the MODQO succeeds in halving the network’s average delay, whilst simultaneously reduc-
ing the network’s average power consumption by 6 dB without increasing the computational

complexity.
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