University of Southampton

Faculty of Physical Sciences and Engineering School of Electronics and Computer Science

Quantum-Assisted Multi-User Wireless Systems

by

Panagiotis Botsinis MEng, MSc

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy

March 2015

SUPERVISORS:

Professor Lajos Hanzo and Dr Soon Xin Ng

 \bigodot Panagiotis Botsinis 2015

UNIVERSITY OF SOUTHAMPTON <u>ABSTRACT</u> FACULTY OF PHYSICAL SCIENCES AND ENGINEERING SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Quantum-Assisted Multi-Used Wireless Systems

by Panagiotis Botsinis

The high complexity of numerous optimal classical communication schemes, such as the Maximum Likelihood (ML) and Maximum *A posteriori* Probability (MAP) Multi-User Detector (MUD) designed for coherent detection or the ML and MAP Multiple-Symbol Differential Detectors (MSDD) conceived for non-coherent receivers often prevents their practical implementation. In this thesis we commence with a review and tutorial on Quantum Search Algorithms (QSA) and propose a number of hard-output and iterative Quantum-assisted MUDs (QMUD) and MSDDs (QMSDD).

We employ a QSA, termed as the Dürr-Høyer Algorithm (DHA) that finds the minimum of a function in order to perform near-optimal detection with quadratic reduction in the computational complexity, when compared to that of the ML MUD / MSDD. Two further techniques conceived for reducing the complexity of the DHA-based Quantum-assisted MUD (QMUD) are also proposed. These novel QMUDs / QMSDDs are employed in the uplink of various multiple access systems, such as Direct-Sequence Code Division Multiple Access systems, Space Division Multiple Access systems as well as in Direct-Sequence Spreading and Slow Subcarrier Hopping SDMA systems amalgamated with Orthogonal Frequency Division Multiplexing and Interleave Division Multiple Access systems.

Furthermore, we follow a quantum approach to achieve the same performance as the optimal Soft-Input Soft-Output (SISO) classical detectors by replacing them with a quantum algorithm, which estimates the weighted sum of all the evaluations of a function. We propose a SISO QMUD / QMSDD scheme, which is the quantum-domain equivalent of the MAP MUD / MSDD. Both our EXtrinsic Information Transfer (EXIT) charts and Bit Error Ratio (BER) curves show that the computational complexity of the proposed QMUD / QMSDD is significantly lower than that of the MAP MUD / MSDD, whilst their performance remains equivalent. Moreover, we propose two additional families of iterative DHA-based QMUD / QMSDDs for performing near-optimal MAP detection exhibiting an even lower tunable complexity than the QWSA QMUD. Several variations of the proposed QMUD / QMSDDs have been developed and they are shown to perform better than the state-of-the-art low-complexity MUDs / MSDDs at a given complexity. Their iterative decoding performance is investigated with the aid of non-Gaussian EXIT charts.

Acknowledgements

By completing this Ph.D. thesis, I would like to thank the persons who supported and helped me throughout the completion of this work.

I would sincerely like to thank my supervisors on this project, Professor Lajos Hanzo and Dr. Soon Xin Ng for their continuous and valuable help and discussions, as well as their mental support and trust. Moreover, I feel grateful to Zunaira Babar and Dimitrios Alanis for their insightful comments.

I would also like to thank and dedicate this work to my family, my parents Dimosthenis and Magdalini, my brother Marinos - Damianos, to Agnieszka and to my friends, who are always standing by me, helping, caring, supporting and tolerating me.

DECLARATION OF AUTHORSHIP

I, Panagiotis Botsinis,

declare that the thesis entitled

Quantum-Assisted Multi-User Wireless Systems

and the work presented in the thesis are both my own, and have been generated by me as the result of my own original research. I confirm that:

- this work was done wholly or mainly while in candidature for a research degree at this University;
- where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
- where I have consulted the published work of others, this is always clearly attributed;
- where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
- I have acknowledged all main sources of help;
- where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
- parts of this work have been published as: [1–6].

Signed:	 	 	
Date:	 	 	

List of Publications

Journal Papers:

- D. Alanis, P. Botsinis, Z. Babar, S. X. Ng, and L. Hanzo, "Non-Dominated Quantum Iterative Routing Optimization for Wireless Multihop Networks," *IEEE Access*, (in preparation)
- Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, "The Realm of Quantum LDPC Codes: A Survey & Improved Decoding Strategies," *IEEE Access*, (in preparation)
- 3. P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo, "Iterative Quantum-Assisted Multi-User Detection for Multi-Carrier Interleave Division Multiple Access Systems," *IEEE Transactions on Communications, (submitted)*
- P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo, "Non-Coherent Quantum Multiple Symbol Differential Detection for Wireless Systems," *IEEE Access*, vol. 3, pp. 569–598, 2015
- Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, "The Road From Near-Capacity Classical to Quantum Concatenated Code Design," *IEEE Access*, vol. 3, pp. 146–176, 2015
- D. Alanis, P. Botsinis, S. X. Ng, and L. Hanzo, "Quantum-Assisted Routing Optimization for Self-Organizing Networks," *IEEE Access*, vol. 2, pp. 614–632, 2014
- P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, "Low-Complexity Soft-Output Quantum-Assisted Multi-User Detection for Direct-Sequence Spreading and Slow Subcarrier-Hopping Aided SDMA-OFDM Systems," *IEEE Access*, vol. 2, pp. 451– 472, 2014
- P. Botsinis, S. X. Ng, and L. Hanzo, "Fixed-Complexity Quantum-Assisted Multi-User Detection for CDMA and SDMA," *IEEE Transactions on Communications*, vol. 62, no. 3, pp. 990–1000, 2014
- P. Botsinis, S. X. Ng, and L. Hanzo, "Quantum Search Algorithms, Quantum Wireless, and a Low-Complexity Maximum Likelihood Iterative Quantum Multi-User Detector Design," *IEEE Access*, vol. 1, pp. 94–122, 2013

Conference Papers:

 P. Botsinis, S. X. Ng, and L. Hanzo, "Low-Complexity Iterative Quantum Multi-User Detection in SDMA Systems," *IEEE International Conference on Communica*tions (ICC), June 2014

Contents

Abstract	iii
Acknowledgements	v
List of Publications	vii

xiii

List of Symbols

1	Intr	ntroduction				
	1.1	Motivation				
		1.1.1	Large-Dimensional Holistic Optimization in Wireless Systems	2		
		1.1.2	Multi-Stream Detection in Large-Dimensional Wireless Systems	7		
	1.2	Signal	Detection Meets Quantum Computing	8		
	1.3	Origins of Quantum Computing				
		1.3.1	Origins and Applications of Quantum Search Algorithms $\ldots \ldots$	14		
	1.4	Fundamentals of Quantum Computing				
		1.4.1	Composite Quantum Systems	19		
		1.4.2	Evolution of Quantum Systems	21		
		1.4.3	Measurement of Quantum States	26		
			1.4.3.1 Partial Measurement of Quantum States	27		
		1.4.4	Entanglement	28		

	1.5	Thesis	s Structur	e	30	
2	Har	d-Out	put Qua	ntum-Assisted Multi-User Detection	32	
	2.1	Introd	luction		32	
	2.2	DS-CI	OMA Syst	tem Overview	34	
		2.2.1	Maximu	m A posteriori Probability MUD	35	
		2.2.2	Maximu	m Likelihood MUD	36	
	2.3	Spatia	l Division	Multiple Access System Overview with Multiple Antennas	36	
		2.3.1	Maximu	m A posteriori Probability MUD	37	
		2.3.2	Maximu	m Likelihood MUD	38	
		2.3.3	Zero-For	cong Detector	39	
		2.3.4	Minimu	m Mean Square Error Detector	39	
	2.4	Quant	um Searc	h Algorithms	40	
		2.4.1	Grover's	Quantum Search Algorithm	40	
			2.4.1.1	The Oracle	43	
			2.4.1.2	Grover's Operator	48	
		2.4.2	BBHT (Quantum Search Algorithm	53	
		2.4.3	3 Dürr-Høyer Algorithm			
			2.4.3.1	Quantum Bit String Comparator	55	
			2.4.3.2	The Dürr-Høyer Oracle	56	
			2.4.3.3	Methodology	56	
			2.4.3.4	Dürr-Høyer based MUD in a DS-CDMA scenario	59	
		2.4.4	Determi	nistically-initialized Early-Stopping Dürr-Høyer Algorithm $% \mathcal{A}$.	60	
	2.5	Design	gn Methodology			
	2.6	Simula	lation Results and Discussions			
		2.6.1	1 Full-Rank and Rank-Deficient DS-CDMA Versus SDMA Systems .			
		2.6.2	Under-L	oaded DS-CDMA Systems	72	
		2.6.3	6.3 Effect of the Number of Receive Antennas in SDMA systems .			
			2.6.3.1	Under-Loaded Scenario: $U = 10$ Users - $P = 20$ Receiver Antennas	83	
			2.6.3.2	Full-Rank Scenario: $U = 10$ Users - $P = 10$ Receiver Antennas	85	

			2.6.3.3	Rank-Deficient Scenario: $U = 10$ Users - $P = 5$ Receiver Antennas	87		
		2.6.4	Effect of	the Imperfect Channel Estimation	91		
	2.7	Conclu	usions		92		
3	Iter	ative (Quantum	Assisted Multi-User Detection	95		
	3.1	Introd	luction		95		
	3.2	DSS/S	SSCH SDI	MA-OFDM System Overview	97		
		3.2.1	2.1 Multi-User Detection				
		3.2.2 Slow Frequency Hopping					
		3.2.3	Slow Sul	ocarrier Hopping	101		
			3.2.3.1	Random Slow Subcarrier Hopping	101		
			3.2.3.2	Uniform Slow Subcarrier Hopping	102		
			3.2.3.3	DSS-based Uniform Slow Subcarrier Hopping	102		
	3.3	MC-II	OMA Syst	em Overview	103		
	3.4	Quant	um Weigł	nted Sum Algorithm	105		
		3.4.1	Preparat	tion of the quantum register $ \Psi\rangle$	106		
		3.4.2	Quantur	n Amplitude Estimation	112		
			3.4.2.1	Reflection with respect to the unwanted states $\ . \ . \ .$.	113		
			3.4.2.2	Reflection with respect to the input state $ \Psi\rangle$	115		
			3.4.2.3	Phase Estimation Algorithm	116		
		3.4.3	Normaliz	zation and Computational Complexity	119		
		3.4.4	QWSA (QMUD in a DS-CDMA scenario	123		
			3.4.4.1	Soft-Input Soft-Output Maximum A posterioriProbabilityMUD	125		
			3.4.4.2	Dürr-Høyer Algorithm-based MUD / Normalization Factor	125		
			3.4.4.3	Quantum Weighted Sum Algorithm Analysis	126		
		3.4.5	Performa	ance of the Quantum Weighted Sum Algorithm QMUD	133		
	3.5	Iterati	ive DHA-l	pased QMUD	139		
		3.5.1	DHA QI	MUD Relying on Maximum Approximation	141		
			3.5.1.1	Neighbour Exploitation	142		
			3.5.1.2	Complexity	143		
		3.5.2	DHA QI	MUD Relying on Multi-Input Approximation	144		

			3.5.2.1	Complexity	149	
			3.5.2.2	Forward Knowledge Transfer	149	
			3.5.2.3	Forward and Backward Knowledge Transfer	150	
	3.6	Soft-O	utput An	t Colony Optimization with Free Will	153	
	3.7	SO De	tection P	erformance in DSS/SSCH SDMA-OFDM Systems	154	
	3.8	DSS-b	ased USS	CH Versus USSCH	162	
	3.9	Iterati	ve Detect	ion Performance in MC-IDMA Systems	164	
		3.9.1	Gaussiar	n Vs. Non-Gaussian LLR Ditributions	168	
			3.9.1.1	Consistency Condition of the DHA-MAA QMSDDs $\ . \ . \ .$	171	
		3.9.2	Impact of	of the Coding Rate and Spreading Factor	177	
		3.9.3	Effect of	the Imperfect Channel Estimation	179	
	3.10	Conclu	usions		182	
4	Non	-Cohe	$\operatorname{rent}\mathbf{Q}\mathbf{M}$	ISDD in Multiple Access Systems	187	
	4.1	Introd	uction		187	
	4.2	Non-Coherent DS/SSCH SDMA-OFDM System Model				
	4.3	Conve	nventional Differential Detector			
		4.3.1	Effect of Time-Selective Channels			
	4.4	Hard-I	ard-Input Hard-Output Multiple Symbol Differential Detectors $\ldots \ldots 20$			
		4.4.1 Maximum-Likelihood MSDD				
		4.4.2	Dürr-Hø	yer Algorithm-Based QMSDD	205	
		4.4.3	Early-St	opping Aided Dürr-Høyer Algorithm-Based QMSDD	207	
	4.5	Soft-In	nput Soft-	Output Multiple-Symbol Differential Detectors	210	
		4.5.1	Maximu	m A Posteriori Probability MSDD	210	
		4.5.2	DHA-M.	AA QMSDD	212	
			4.5.2.1	EXIT Charts of the DHA-MAA QMSDDs without Gaussian Assumptions	220	
		453	DHA-MI	UA OMSDD	222	
		11010	4531	Consistency Condition of the DHA-MUA OMSDDs	227	
			4.5.3.2	EXIT Charts of the DHA-MAA OMSDDs without Gaus-		
			1.0.0.2	sian Assumptions	228	
		4.5.4	Quantur	n Weighted Sum Algorithm-based QMSDD	232	
			4.5.4.1	Consistency Condition of the DHA-QWSA QMSDD	235	

	4.6	Exploi	itation of the Conventional Differential Detector	. 238			
		4.6.1	Hard-Output CDD-initialized QMSDD	. 239			
		4.6.2	SISO CDD-initialized QMSDD	. 241			
	4.7	Emplo	by ment of the QMSDD every IpS QMSDD-DEC Iterations	. 244			
	4.8	Detect	tion Window Length and Frequency of Subcarrier Hopping	. 247			
	4.9	Conclu	usions	. 252			
5	Con	clusio	ns and Future Work	257			
Li	List of Abbreviations 2						
Bi	Bibliography						
Sι	Subject Index 2						
\mathbf{A}	Author Index 28						