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ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Reduced-Complexity Communications System Design

by Chao Xu

The technical breakthrough of Turbo Codes (TCs) initiated two decades of exciting develop-
ments leading to a suite of near-capacity techniques. It has been widely recognized that exchang-
ing extrinsic information between the channel decoders and the modulated signal detectors assists
communications systems in approaching their best possible performance potential that is predicted
by the channel capacity. Nonetheless, in line with Moor’s Law, as researchers inch closer and
closer to the channel capacity, the complexity of the resultant communications systems is also
significantly increased. In fact, soft-decision-aided signal detection conceived for Single-Input
Single-Output (SISO), Single-Input Multiple-Output (SIMO) and Multiple-Input Multiple-Output
(MIMO) schemes typically contribute a substantial fraction of the total complexity, especially when
multiple received samples have to be jointly detected in order to combat the deleterious effect of
channel fading. Against this background, in this treatise, we firstly propose a reduced-complexity
design for the classic soft-decision-aided PSK/QAM detectors, and then these reduced-complexity
design guidelines are applied to a variety of communications systems spanning from coherent to
noncoherent, from uncoded to coded, and also from SISO to MIMO systems. Our aim is to reduce
the computational complexity as much as possible, especially for complex near-capacity communi-
cations systems, while mitigating any performance loss imposed by our reduced-complexity design.

First of all, we commence from the family of basic coherent SISO/SIMO systems, where
both uncoded and coded PSK/QAM schemes are considered. The channel coding assisted near-
capacity systems design principles are introduced based on EXtrinsic Information Transfer (EXIT)
charts. Furthermore, we observe that the Max-Log-MAP algorithm invoked for soft-decision-aided
PSK/QAM detection aims for finding the maximum probabilities, which is similar to the action of
hard-decision-aided detection of uncoded MPSK/QAM schemes. Therefore, we propose to link
each a priori LLR to a reduced-size fraction of the channel’s output signal constellations, so that
the Max-Log-MAP algorithm may be operated at a reduced complexity. Moreover, the correspond-
ing reduced-complexity Approx-Log-MAP algorithm is also conceived by compensating for the
Max-Log-MAP algorithm’s widely-used Jacobian approximation relying on a lookup table. Our
performance results demonstrate that up to 41.6% and 72.6% complexity reductions are attained
for soft-decision-aided Square 64QAM and Star 64QAM detectors, respectively, which is achieved
without any performance loss. This complexity reduction is substantial, especially when the soft-
decision-aided signal detectors are invoked several times during turbo detection.



Secondly, we proceed by conceiving reduced-complexity algorithms for the noncoherently de-
tected DPSK schemes in both uncoded and coded SISO/SIMO systems. More explicitly, the DPSK
transmitter modulates the data-carrying symbols onto the phase changes between consecutive trans-
mitted symbols, so that the Conventional Differential Detection (CDD) may recover the source
information by observing the phase change between every pair of consecutive received samples.
However, the CDD aided DPSK suffers from a 3 dB performance penalty compared to its coherent
counterpart. Moreover, an irreducible error floor occurs, when the CDD is employed in rapidly fluc-
tuating fading channels. In order to mitigate this problem, Multiple-Symbol Differential Detection
(MSDD) may be invoked in order to improve the DPSK performance by extending the observation
window length from the CDD’s Nw = 2 to Nw ≥ 2. The price paid is that the MSDD complex-
ity grows exponentially with (Nw − 1) as a result of jointly detecting the (Nw − 1) data-carrying
symbols. As a remedy, the Decision-Feedback Differential Detection (DFDD) concept may be in-
troduced in order to detect a single symbol based on previous decisions concerning the (Nw − 2)

data-carrying symbols in a MSDD window. However, the DFDD inevitably imposes a perfor-
mance loss due to its inherent error propagation problem. In order to retain the optimal MSDD
performance, the Multiple-Symbol Differential Sphere Detection (MSDSD) facilitates the MSDD
by invoking a Sphere Decoder (SD). Against this background, we firstly propose to introduce a
simple correlation operation into the hard-decision-aided MSDSD employing an arbitary number
of Receive Antennas (RAs), so that the SD may visit the constellation points in a zigzag fashion
for the case of uncoded DPSK SIMO systems. Furthermore, we propose a reduced-complexity
Schnorr-Euchner search strategy for the soft-decision MSDSD employing an arbitrary number of
RAs, so that the optimum candidate may be found by visiting a reduced-size subset of constellation
points, and then the rest of the constellation points may be visited in a zig-zag fashion. Our simula-
tion results demonstrate that up to 88.7% complexity reduction is attained for MSDSD (Nw = 4)

aided D16PSK. We have also proposed the near-optimum Approx-Log-MAP algorithm conceived
for soft-decision-aided SD, which has not been disseminated in the open literature at the time of
writing. Furthermore, the important subject of coherent versus noncoherent detection is discussed
in the context of coded systems, which suggests that MSDSD aided DPSK is an eminently suitable
candidate for turbo detection assisted coded systems operating at high Doppler frequencies.

Following this, a range of noncoherent detectors designed for non-constant modulus Differen-
tial QAM (DQAM) schemes are introduced for both uncoded and coded scenarios, where the open
problem of MSDSD aided Differential QAM (DQAM) is solved. More explicitly, the MSDSD
relies on the knowledge of channel correlation, which is determined both by the Doppler frequency
and by the noise power. For DPSK, the transmitter’s phases may form a unitary matrix, which
may be separated from the channel’s correlation matrix, so that a lower triangular matrix that is
created by decomposion from the inverse of the channel’s correlation matrix may be utilized in the
context of sphere decoding. However, for DQAM, the transmitted symbol-amplitudes cannot form
a unitary matrix, which implies that they have to be taken into account by the channel’s correla-
tion matrix. As a result, the symbol-amplitude-dependent channel correlation matrix only becomes
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known, when all the symbol-amplitudes are detected. Furthermore, the classic DFDD solutions
conceived for DQAM rely on the assumption of the channel’s correlation matrix being independent
of the symbol-amplitudes, which implies that these DFDD solutions are sub-optimal and they are
not equivalent to the decision-feedback aided version of the optimum MSDD. To circumvent these
problems, we prove that although the complete channel correlation matrix remains unknown, the
associated partial channel correlation matrix may be evaluated with the aid of the SD’s previous
decisions as well as by relying on a single information-dependent symbol amplitude that may be
readily found by the SD. As a benefit, we are able to invoke sphere decoding for both amplitude
detection and phase detection in the context of MSDD aided DQAM. Furthermore, we have also
improved the classic DFDD solutions conceived for DQAM by directly deriving them from the op-
timum MSDD. Moreover, we offer a unified treatment of diverse noncoherent detectors, including
CDD, MSDD,MSDSD and DFDD for a variety of DQAM constellations that exist in the literature,
including Differential Amplitude Phase Shift Keying (DAPSK), Absolute-Amplitude Differential
Phase Shift Keying (ADPSK) and their twisted constellations. The reduced-complexity algorithms
proposed for DPSK detection are also applied to DQAM detection in both uncoded and coded
systems .

Last but not the least, we provide insights concerning the design of MIMO systems in both
uncoded and coded scenarios, where two of the salient tradeoffs encountered in MIMO system de-
sign are investigated. Firstly, the tradeoff between the attainable multiplexing and diversity gain of
MIMO schemes is discussed. More explicitly, the V-BLAST MIMO systems have a capacity that
may even grow linearly with the number of antennas, but they are not designed for achieving a trans-
mit diversity gain for combating the effects of fading. By contrast, the family of Space-Time Block
Codes (STBCs) offers a benefical transmit diversity gain, but the STBCs cannot achieve the full
MIMO capacity. In order to circumvent this problem, the Linear Dispersion Code (LDC) concept
may be introduced to resolve this tradeoff, where a total number of NQ modulated MPSK/QAM
symbols are dispersed across both the NT-element spatial domain and the NP-element time domain
of the transmission matrix. As a result, the LDCmay attain both the full MIMO capacity and the full
transmit diversity gain, provided that the parameters satisfy NQ ≥ NT NP. Nonetheless, since the
STBC’s orthogonality requirements are dropped by the LDC design, the LDC receiver has to em-
ploy the V-BLAST detectors in order to tackle the Inter-Antenna Interference (IAI). Hence a trade-
off between the performance attained and the complexity imposed is encountered, which explicitly
manifests itself in the context of V-BLAST receiver design. More explicitly, on the one hand, it is
well known that the ML detector and the SD are capable of achieving the best possible V-BLAST
performance in uncoded systems, but their detection complexity may be potentially excessive, when
employing a large number of Transmit Antennas (TAs). The optimum MAP V-BLAST detection
complexity may become especially unaffordable, when the MIMO detector is invoked several times
in the context of turbo detection in coded systems. On the other hand, linear V-BLAST receivers
such as the classic MMSE receiver may be invoked in order to separate the superimposed parallel
data streams. However, the residual IAI persisting after the linear interference-suppression filter
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may still severely degrade the MIMO system’s performance. Against this background, the Spatial
Modulation (SM) concept may be introduced. Our goal is to ensure that the optimal ML MIMO
detection performance may be achieved for SM at a substantially reduced complexity. More explic-
itly, the SM transmitter activates a single one out of NT TAs in order to transmit a single modulated
MPSK/QAM symbol. As a result, the SM receiver may aim for detecting the TA activation in-
dex and the modulated symbol index separately at a reduced complexity. Moreover, the concept
of Space-Time Shift Keying (STSK) once again achieves a beneficial diversity gain, where a sin-
gle one out of NQ dispersion matrices is activated for dispersing a single modulated MPSK/QAM
symbol. The STSK receiver may employ the low-complexity SM detectors in order to recover both
the activated dispersion matrix index and the modulated symbol index. However, completely in-
dependently detecting the TA activation index and the modulated MPSK/QAM symbol imposes a
performance loss on the SM receiver. This is because the potentially erroneous decisions concern-
ing the TA activation index may mislead the MPSK/QAM demodulator into detecting the wrong
symbol. In order to mitigate this problem, in this treatise, we have proposed reduced-complexity
algorithms conceived both for hard-decision-aided SM detection and for soft-decision-aided SM
detection, where the optimal SM performance is retained by taking into account the correlation
between the TA activation index and the modulated MPSK/QAM symbol index. A range of other
optimal and suboptimal SM detectors characterized in the literature are also summarized for the
sake of comparison.
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