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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Coherent and Non-coherent Coded Modulation For Cooperative Communications

by Dandan Liang

The design trade-offs of coherent versus non-coherent coded modulation conceived for co-
operative communications are explored. More specifically, coherent versus non-coherent coded
modulation designed for traditional point-to-point communications is investigated first, before we
extend the application of coded modulation to cooperative communications.

Firstly, we focus our attention on coherent coded modulation, when communicating over Ad-
ditive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels, followed by
the investigation of the adaptive coded modulation (ACM), when transmitting over both quasi-
static as well as over shadow-and-fast Rayleigh fading channels. Furthermore, soft-decision aided
non-coherent coded modulation designed both for fixed modes and adaptive modes is proposed.
More specifically, we conceive soft-decision aided Differential Amplitude and Phase-Shift Key-
ing (DAPSK) for low-complexity wireless communications, since it dispenses with high-complexity
channel estimation. We commence by designing soft-decision based demodulation for 16-level
DAPSK, or l6-level Star Quadrature Amplitude Modulation, which is then invoked for iterative
detection aided Bit-Interleaved Coded Modulation (BICM-ID). It is shown that the proposed 16-
DAPSK based BICM-ID scheme achieves a coding gain of approximately 14 dBs in compari-
son to the identical-throughput 16-level Differential Phase-Shift Keying (16DPSK) assisted BICM
scheme at a Bit Error Ratio (BER) of 10−6. Then, we derive the soft-output probability formulas
required for a soft-decision based demodulation of high-order DAPSK, in order to facilitate itera-
tive detection by exchanging extrinsic information with an outer Turbo Code (TC). Furthermore,
when the TC block size is increased, the system operates closer to the channel capacity. Offset
DAPSK is also considered in order to facilitate the employment of a less stringent linear power
amplifier specification at the transmitter. Compared to the identical-throughput TC assisted 64-ary
Differential Phase-Shift Keying (64-DPSK) scheme, the 4-ring based TC assisted 64-ary DAPSK
arrangement has a power-efficiency improvement of 4.2 dB at a BER of 10−5. Furthermore, when
the TC block size is increased, the system operates closer to the channel capacity. More specifi-
cally, when using a TC block length of 400 modulated symbols, the 64 DAPSK(4, 16) scheme is
11.25 dB away from its capacity curve, while it operates within 2.7 dB of the capacity, when using
a longer TC block length of 40 000 symbols. Furthermore, for the sake of an improved energy
efficiency, we proposed the adaptive modes for non-coherent coded modulation.

Then, we considered coded modulation schemes designed for cooperative communications.



Firstly, an attractive hybrid method of mitigating the effects of error propagation that may be im-
posed by the relay node (RN) on the destination node (DN) is proposed in Chapter 4. We select
the most appropriate RN location for achieving a specific target BER at the relay and signalled the
RN-BER to the DN. The knowledge of this BER is then exploited by the decoder at the destination.
Our simulation results show that when the BER encountered at the RN is low, we do not have to
activate the RN-BER aided decoder at the DN. However, when the RN-BER is high, significant
system performance improvements may be achieved by activating the proposed RN-BER based
decoding technique at the DN. For example, a power-reduction of up to about 19 dB is recorded
at a DN BER of 10−4. Secondly, the basic principle of ACM invoked for cooperative communi-
cations is detailed in the context of three main structures: single RN aided ACM, twin RN aided
ACM and single RN aided ACM additionally combined with the source-to-destination (SD) link
at the DN. Then we propose an adaptive TTCM (ATTCM) aided Distributed Space-Time Trellis
Coding (STTC) scheme for cooperative communication over quasi-static Rayleigh fading chan-
nels. Specifically, an ATTCM scheme is employed by the source node during the first transmission
period for reliably conveying the source bits to N RNs by appropriately adjusting the code-rate
and modulation mode according to the near-instantaneous channel conditions. It is shown that the
proposed ATTCM-DSTTC scheme requires 12 dBs less transmission power in comparison to a
standard TTCM scheme when aiming for a Frame Error Ratio (FER) of 10−3.

Finally, we focus our attention on non-coherent coded modulation conceived for cooperative
communications. Firstly, we investigate a 16-StQAM-TC assisted NC scheme relying on the pop-
ular butterfly network topology. As expected, the achievable BER performance is affected by the
location of the RN. More specifically, when the transmit powers at the SNs and RN are identical,
the RN located at the centre of the butterfly network topology achieves the best performance. How-
ever, when the appropriately designed power sharing approach is invoked in Section 5.2.1.2, the
optimum RN location is closer to the DNs, and another 1 dB of power gain can be attained. Then,
the NC capacity was quantified and the simulation results of Figure 5.5 showed that the achievable
capacity of the NC scenario is improved compared to the single-link scenario. Secondly, as a novel
application example, our soft-decision M-DAPSK scheme is incorporated into an AF based coop-
erative communication system. We found that an AF based cooperative communication system
obtains a 4.5 dB SNR improvement for a TC block length of 40 000 modulated symbols, com-
pared to that of the traditional point-to-point transmission. Finally, we propose a low-complexity
amalgamated cooperative wireless and optical-fiber communication scheme for uplink communi-
cation in a FFR based multicell, multiuser system. The FFR principle is invoked for improving
the cell-edge performance without reducing the throughput of the cell-center. Each cell is illumi-
nated with the aid of six Remote Antennas (RAs), which are connected to the central base-station
with the aid of realistically modelled imperfect optical-fiber links. When a Mobile Station (MS)
is located at the cell-edge, the two nearest RAs can be invoked for detecting and forwarding the
user’s signal to the base-station, based on the Single-Input Multiple-Output (SIMO) principle. Fur-
thermore, we employ both the Digital Fiber Optic (DFO) and Analogue Radio-over-Fiber (AROF)
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principles for the optical fiber link. We then design a Turbo Coded (TC) 16-level Star-Quadrature
Amplitude Modulation (StQAM) scheme for supporting optical-fiber-aided cooperative wireless
transmissions, where the receiver does not have to estimate the channel state information. Hence,
a lower detection complexity can be achieved, when compared to coherently detected schemes,
albeit naturally, at a 3 dB power-loss. We also investigate the effect of phase-rotations imposed by
imperfect optical-fiber links. Our non-coherent TC-StQAM scheme is robust to both wireless and
optical-fiber imperfections. More explicitly, the proposed TC-StQAM-SIMO scheme is capable of
removing 6 out of 12 BER peaks at the cell-edge, despite dispensing with CSI for both the wireless
and optical-fiber links. As a further improvement, the adaptive turbo-coded soft-decision aided
differential detection (ATSDD) scheme is employed by the Mobile Station (MS) for reliably con-
veying the source bits to a pair of nearby Remote Antennas (RAs) by appropriately adjusting the
modulation mode according to the near-instantaneous wireless and AROF channel condition. The
ATSDD switching thresholds are specifically adjusted for ensuring that the BER remains below
10−5. We also investigated the effect of phase-rotations routinely imposed by practical imperfect
Radio-over-fiber (ROF) links. We demonstrate that our ATSDD scheme is robust to both wireless
and optical-fiber imperfections.
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