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by
Lingkun Kong

Space-time transmission based colocated and distributedMultiple-InputMultiple-Output
(MIMO) systems are investigated. Generally speaking, there are two types of fundamen-
tal gains, when using multiple antennas in wireless communications systems: the multi-
plexing gain and the diversity gain. Spatial multiplexing techniques such as the Vertical
Bell-labs LAyered Space-Time (V-BLAST) scheme exploit the associated multiplexing
gain in terms of an increased bit rate, whereas spatial diversity techniques such as Space-
Time Coding (STC) aim for achieving a diversity gain, which results in a reduced error
rate. Firstly, we concentrate our attention on a novel space-time transmission scheme,
namely on Generalized Multi-Layer Space-Time Codes (GMLST), which may be viewed
as a composite of V-BLAST and STC, hence they provide both multiplexing and diver-
sity gains. The basic decoding procedure conceived for our GMLST arrangement is a
certain ordered successive decoding scheme, which combines group interference nulling
and interference cancellation. We apply a specifically designed power allocation scheme,
in order to avoid the overall system performance degradation in the case of equal power
allocation. Furthermore, the optimal decoding order is found, in order to enhance the
system’s performance with the aid of the channel state information (CSI) at the receiver.
However, our decoding scheme relying on power allocation or on the optimal decoding
order does not take full advantage of the attainable receive antenna diversity. In order
to make the most of this source of diversity, an iterative multistage Successive Interfer-
ence Cancellation (SIC) detected GMLST scheme was proposed, which may achieve the
full receive diversity after a number of iterations, while imposing only a fraction of the
computational complexity of Maximum Likelihood (ML)-style joint detection.

Furthermore, for the sake of taking full advantage of the available colocated MIMO
channel capacity, we present a low-complexity iteratively detected space-time transmis-
sion architecture based on GMLST codes and IRregular Convolutional Codes (IRCCs).
The GMLST arrangement is serially concatenated with a Unity-Rate Code (URC) and an
IRCC, which are used to facilitate near-capacity operation with the aid of an EXtrinsic



Information Transfer (EXIT) chart based design. Reduced-complexity iterative multi-
stage SIC is employed in the GMLST decoder instead of the significantly more complex
ML detection. For the sake of approaching the maximum attainable rate, iterative de-
coding is invoked to achieve decoding convergence by exchanging extrinsic information
across the three serially concatenated component decoders. Finally, it is shown that the
iteratively detected IRCC-URC-GMLST scheme using SIC strikes an attractive trade-off
between the complexity imposed and the effective throughput attained, while achieving a
near-capacity performance.

The above-mentioned advances were also exploited in the context of near-capacity
communications in distributed MIMO systems. Specifically, we proposed an Irregular
Cooperative Space-Time Coding (Ir-CSTC) scheme, which combines the benefits of Dis-
tributed Turbo Codes (DTC) and serially concatenated schemes. Firstly, a serial concate-
nated scheme comprising an IRCC, a recursive URC and a STC was designed for the
conventional single-relay-aided network for employment at the source node. The IRCC
is optimized with the aid of EXIT charts for the sake of achieving a near-error-free de-
coding at the relay node at a minimum source transmit power. During the relay’s transmit
period, another IRCC is amalgamated with a further STC, where the IRCC employed at
the relay is further improved with the aid of a joint source-and-relay mode design proce-
dure for the sake of approaching the relay channel’s capacity. At the destination node, a
novel three-stage iterative decoding scheme is constructed in order to achieve decoding
convergence to an infinitesimally low Bit Error Ratio (BER) at channel Signal-to-Noise
Ratios (SNRs) close to the relay channel’s capacity. As a further contribution, an ex-
tended Ir-CSTC scheme is studied in the context of a twin-relay aided network, where a
successive relaying protocol is employed. As a benefit, the factor two multiplexing loss
of the single-relay-aided network - which is imposed by the creation of two-phase coop-
eration - is recovered by the successive relaying protocol with the aid of an additional
relay. This technique is more practical than the creation of a full-duplex system, which
is capable of transmitting and receiving at the same time. The generalized joint source-
and-relay mode design procedure advocated relies on the proposed procedure of finding
the optimal cooperative coding scheme, which performs close to the twin-relay-aided net-
work’s capacity. The corresponding simulation results verify that our proposed Ir-CSTC
schemes are capable of near-capacity communications in both the single-relay-aided and
the twin-relay-aided networks.

Having studied diverse noise-limited single-user systems, we finally investigate a mul-
tiuser space division multiple access (SDMA) uplink system designed for an interference-
limited scenario, where the multiple access interference (MAI) significantly degrades the
overall system performance. For the sake of supporting rank-deficient overloaded sys-
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tems, a maximum signal-to-interference-plus-noise ratio (MaxSINR) based SIC multiuser
detection (MUD) algorithm is proposed for the multiple-antenna aided multi-user SDMA
system, which is capable of striking a trade-off between the interference suppression and
noise enhancement. Furthermore, the multiuser SDMA system is combined with channel
codes, which assist us in eliminating the typical error floors of rank-deficient systems. Re-
ferring to the Ir-CSTC scheme designed for the single-user scenario, relaying techniques
are invoked in our channel-coded SDMA systems, which benefit from extra spatial di-
versity gains. In contrast to the single-user Ir-CSTC schemes, interference suppression
is required at both the base station (BS) and the relaying mobile station (MS). Finally,
a more practical scenario is considered where the MSs have spatially correlated trans-
mit antennas. In contrast to the conventional views, our simulation results suggest that
the spatial correlation experienced at the transmitter is potentially beneficial in multiuser
SDMA uplink systems, provided that efficient MUDs are invoked.
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