XIV International Workshop on Neutrino Telescopes Venice, 15-18 March 2011

Leptogenesis and

neutrino masses

Pasquale Di Bari
Southampton

The couble side of Leptogenesis

Cosmology
 (early Universe)

- Cosmological Puzzles:

1. Dark matter
2. Matter - antimatter asymmetry
3. Inflation
4. Accelerating Universe

- New stage in early Universe history:
< $10^{14} \mathrm{GeV}$ - Inflation
T 100 GeV - EWSSB
0.1-1 MeV-BBN
0.1-1 eV - Recombination

Leptogenesis complements low energy neutrino experiments testing the
seesaw mechanism high energy parameters
\Rightarrow It provides a precious information on the BSM physics responsible for neutrino masses and mixing: a model builders compass

Primordial matter-antimatter asymmetry

- Symmetric Universe with matter- anti matter domains ? Excluded by CMB + cosmic rays

$$
\Rightarrow \tau_{B}^{C M B}=\frac{n_{B}-n_{B}}{n_{\gamma}}=(6.2 \pm 0.15) \times 10^{-10}
$$

- Pre-existing ? It conflicts with inflation ! (Dolgov 97) \Rightarrow dynamical generation (baryogenesis) (Sakharov '67)

Neutrino masses: $m_{1}<m_{2}<m_{3}$

neutrino mixing data
2 possible schemes: normal or inverted

$$
\begin{aligned}
& m_{3}^{2}-m_{2}^{2}=\Delta m_{\mathrm{atm}}^{2} \text { or } \Delta m_{\mathrm{sol}}^{2} \quad m_{\mathrm{atm}} \equiv \sqrt{\Delta m_{\mathrm{atm}}^{2}+\Delta m_{\mathrm{sol}}^{2}} \simeq 0.05 \mathrm{eV} \\
& m_{2}^{2}-m_{1}^{2}=\Delta m_{\mathrm{sol}}^{2} \quad \text { or } \Delta m_{\mathrm{atm}}^{2} \quad m_{\mathrm{sol}} \equiv \sqrt{\Delta m_{\mathrm{sol}}^{2}} \simeq 0.009 \mathrm{eV}
\end{aligned}
$$

Tritium β decay $:_{e}<2.3 \mathrm{eV}$ (Mainz 95\% CL)
$\beta \beta 0 v: \mathrm{m}_{\beta \beta}<0.3-1.0 \mathrm{eV}$ (Heidelberg-Moscow 90\% CL, CUORICINO)

Cosmology:
$\Sigma m_{i}<(0.2-0.6) \mathrm{eV}(90 \% \mathrm{CL})$. (Melchiorri, Lisi talk)

Minimal scenario

-Type I seesaw

$$
\mathcal{L}_{\text {mass }}^{\nu}=-\frac{1}{2}\left[\left(\bar{\nu}_{L}^{c}, \bar{\nu}_{R}\right)\left(\begin{array}{cc}
0 & m_{D}^{T} \\
m_{D} & M
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{c}}\right]+\text { h.c. }
$$

In the see-saw limit $\left(M \gg m_{D}\right)$ the spectrum of mass eigenstates splits in 2 sets:

- 3 light neutrinos $\nu_{1}, \nu_{2}, \nu_{3}$ with masses

$$
\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)=-U^{\dagger} m_{D} \frac{1}{M} m_{D}^{T} U^{\star}
$$

- 3 new heavy RH neutrinos N_{1}, N_{2}, N_{3} with masses $M_{3}>M_{2}>M_{1} \gg m_{D}$
-Thermal production of the RH neutrinos $\Rightarrow T_{R H} \gtrsim M_{i}$

An impossible task ?

Is it possible to reconstruct m_{D} and M just from low energy neutrino experiments measuring m_{i} and $U_{\text {PMNS }}$?
(Casas, Ibarra'01)

$$
m_{\nu}=-m_{D} \frac{1}{M} m_{D}^{T} \Leftrightarrow \Omega^{T} \Omega=I
$$

$$
m_{D}=U\left(\begin{array}{c}
\sqrt{m_{1}} 00 \\
0 \\
0 \\
0 \\
0 \\
\hline m_{2} \\
\sqrt{m_{3}}
\end{array}\right) \Omega\left(\begin{array}{cc}
\sqrt{M_{1}} 00 \\
0 & \sqrt{M_{2}} 0 \\
0 & 0 \sqrt{M_{3}}
\end{array}\right) \quad I \quad\left(\begin{array}{cc}
U^{\dagger} U & = \\
U^{\dagger} m_{\nu} U^{\star} & =
\end{array}\right)
$$

(in the basis where charged lepton and Majorana mass matrices are diagonal)

- parameter counting: $6+3+6+3=18$

However, hand neutrino experiments give information only on the 9 parameters contained in $m_{\nu}=-U D_{m} U^{T}$
The 6 parameters in the orthogonal matrix Ω [it encodes the 3 life times and the 3 total CP asymmetries of the RH neutrinos and it is an invariant (King '07)] + the 3 masses M_{i} escape the conventional investigation!

Leptogenesis is important to obtain information on the high energy parameters complementing the low energy neutrino experiments

The simplest description: vanilla leptogenesis

1) Flavor composition of final leptons is neglected

$$
N_{i} \xrightarrow{\Gamma} l_{i} H^{\dagger} \quad N_{i} \xrightarrow{\bar{\Gamma}} \bar{l}_{i} H
$$

Total CP asymmetries

$$
\varepsilon_{i} \equiv-\frac{\Gamma_{i}-\bar{\Gamma}_{i}}{\Gamma_{i}+\bar{\Gamma}_{i}}
$$

If $\varepsilon_{i} \neq 0$ a lepton asymmetry is generated from N_{i} decays and partly converted into a baryon asymmetry by sphaleron processes if $\mathrm{T}_{\text {reh }} \gtrsim \mathbf{1 0 0} \mathbf{~ G e V ~ ! ~ (K u z m i n , ~ R u b a k o v , ~ S h a p o s h n i k o v , ~ ' 8 5) ~}$

$$
N_{B-L}^{\text {fin }}=\sum_{i} \varepsilon_{i} \kappa_{i}^{\text {fin }} \Rightarrow \eta_{B}=a_{\mathrm{sph}} \frac{N_{B-L}^{\text {fin }}}{N_{\gamma}^{\text {ect }}} \begin{aligned}
& \text { baryon-oto } \\
& \text { opunton } \\
& \text { number } \\
& \text { ratio }
\end{aligned}
$$

efficiency factors $\simeq \#$ of N_{i} decaying out-of-equilibrium
Successful leptogenesis : $\eta_{B}=\eta_{B}^{c M B}=(6.2 \pm 0.15) \times 10^{-10}$

The total CP asymmetries can be calculated from :

2) Strongly hierarchical heavy RH neutrino spectrum $M_{2} \gtrsim 100 M_{1}$
3) N_{3} does not interfere with N_{2}-decays:

$$
\left(m_{D}^{\dagger} m_{D}\right)_{23}=0
$$

Imposing $\eta_{B}=\eta_{B}^{C M B}$, one obtains a N_{1}-dominated scenario:

$$
\Rightarrow \quad N_{B-L}^{\text {fin }}=\sum_{i} \varepsilon_{i} \kappa_{i}^{\text {fin }} \simeq \varepsilon_{1}\left(\kappa_{1}^{\text {fin }} \rightarrow\right. \text { efficiency }
$$

4) Barring fine-tuned mass cancellations

$$
\left|\Omega_{i j}^{2}\right| \lesssim 1
$$

\Rightarrow Upper bound on ε_{1}

(Davidson, Ibarra '02)

$$
\varepsilon_{1} \leq 10^{-6}\left(\frac{M_{1}}{10^{10} \mathrm{GeV}}\right) \frac{m_{\mathrm{atm}}}{m_{1}+m_{3}}
$$

5) Classical Kinetic equations integrated on momenta

Neutrino mass bounds

(Davidson,Ibarra '02;Buchmüller,PDB,Plümacher '02,'03,'04; Giudice et al. '04) \underline{N}_{1}-dominated scenario

$$
\Rightarrow \quad N_{B-L}^{\mathrm{fin}}=\sum_{i} \varepsilon_{i} \kappa_{i}^{\mathrm{fin}} \simeq \varepsilon_{1} \kappa_{1}^{\mathrm{fin}}
$$

Imposing:

Vanilla leptogenesis is not compatible with quasi-deg. neutrinos

These large temperatures in gravity mediated SUSY models suffer from the gravitino problem

An encouraging coincidence

The early Universe "knows" neutrino masses ...

(Buchmüller,PDB,Plümacher '04)

$$
\eta_{B} \simeq 0.01 \varepsilon_{1}\left(m_{1}, M_{1}, \Omega\right) \kappa_{1}^{\mathrm{fin}}\left(K_{1}\right)
$$

decay parameter

$$
K_{1} \equiv \frac{\Gamma_{N_{1}}}{H\left(T=M_{1}\right)}=\frac{m_{\text {sol, atm }}}{m_{\star} \sim 10^{-3} \mathrm{eV}} 10 \div 50
$$

wash-out of

$$
K_{\mathrm{sol}} \simeq 9 \lesssim K_{1} \lesssim 50 \simeq K_{\mathrm{atm}}
$$

a pre-existing asymmetry

$$
N_{B-L}^{\mathrm{p}, \text { final }}=N_{B-L}^{\mathrm{p}, \text { initial }} e^{-\frac{3 \pi}{8} K_{1}} \ll N_{B-L}^{\mathrm{f}, \mathrm{~N}_{1}}
$$

Beyond vanilla Leptogenesis

Improved kinetic description

- Momentum dependence in Boltzmann equations (Hannestad ' 06: Hahn-Woernle, M. Plümacher, Y.Wong '09; Pastor, Vives'09)
- Kadanoff-Baym equations
(Buchmüller,Fredenhagen '01; De Simone,Riotto '07: Garny,Hohenegger, Kartavtsev,Lindner '09: Anisimov,Buchmïller,Drewes,Mendizibal '09;
Beneke, Garbrecht, Herranen, Schwaller '10)
The asymmetry is directly calculated in terms of Green functions instead than in terms of number densities and they account for offshell , memory and medium effects in a systematic way
All studies confirm what also happens for other effects (e.g. inclusion of scatterings) and that is expected:
large theoretical uncertainties in the weak wash-out regime, limited $O(1)$ corrections in the strong wash-out regime where the asymmetry is produced in a narrow range of temperatures for $T \ll M_{i}$ (Buchmüller,PDB,Plümacher)

Light neutrino flavour effects

(Nardi,Nir,Roulet,Racker '06;Abada, Davidson,Losada,Josse-Michaux,Riotto'06: Blanchet, PDB, Raffelt '06; Riotto, De Simone '06)
Flavor composition of lepton quantum states:

$$
\begin{aligned}
& \left|l_{i}\right\rangle=\sum_{\alpha}\left\langle l_{\alpha} \mid l_{i}\right\rangle\left|l_{\alpha}\right\rangle \quad(\alpha=e, \mu, \tau) \\
& \left|\vec{l}_{i}\right\rangle=\sum_{\alpha}\left\langle l_{\alpha} \mid \vec{l}_{i}^{\prime}\right\rangle\left|\bar{l}_{\alpha}\right\rangle
\end{aligned}
$$

- interactions are flavour blind for $M_{i} \gtrsim 10^{12} \mathrm{GeV}$
- But for $M_{i} \lesssim 10^{12} \mathrm{GeV} \Longrightarrow \tau$-Yukawa interactions ($\bar{l}_{L \tau} \phi f_{\tau \tau} e_{R \tau}$) are fast enough to break the coherent evolution of $\left|l_{1}\right\rangle$ and $\left|\vec{l}_{1}\right\rangle$
\Rightarrow they become an incoherent mixture of a τ and of $\mu+e$ If $M_{1} \leqslant 10^{9} \mathrm{GeV}$ then also μ - Yukawas in equilibrium $\Rightarrow 3$-flavor regime

$$
\Rightarrow N_{\substack{\text { fin } \\ \text { heavy neutrino } \\ \text { flavor index }}}=\sum_{i, \alpha} \varepsilon_{i \alpha} \kappa_{i \alpha}^{\text {fin }} \quad(\alpha=e, \mu, \tau)
$$

Fully two-flavored regime

Let us first insist with a N_{1}-dominated scenario: $\Rightarrow N_{B-L}^{\mathrm{fin}}=\sum_{\alpha=\tau, e+\mu} \varepsilon_{1 \alpha} \kappa_{1 \alpha}^{\mathrm{fin}}$

$$
\begin{array}{lr}
P_{1 \alpha} \equiv\left|\left\langle l_{\alpha} \mid l_{1}\right\rangle\right|^{2}=P_{1 \alpha}^{0}+\Delta P_{1 \alpha} / 2 & \left(\sum_{\alpha} P_{1 \alpha}^{0}=1\right) \\
\bar{P}_{1 \alpha} \equiv\left|\left\langle\bar{l}_{\alpha} \mid \bar{l}_{1}^{\prime}\right\rangle\right|^{2}=P_{1 \alpha}^{0}-\Delta P_{1 \alpha} / 2 & \left(\sum_{\alpha} \Delta P_{1 \alpha}=0\right)
\end{array}
$$

These 2 terms correspond respectively to 2 different flavor effects:

1) wash-out is in general reduced: $K_{1} \rightarrow K_{1 \alpha} \equiv K_{1} P_{1 \alpha}^{0}$
2) additional $C P$ violating contribution $\left(\left|\bar{l}_{1}^{\prime}\right\rangle \neq C P\left|l_{1}\right\rangle\right)$

$$
\Rightarrow \quad \varepsilon_{1 \alpha} \equiv-\frac{P_{1 \alpha} \Gamma_{1}-\bar{P}_{1 \alpha} \bar{\Gamma}_{1}}{\Gamma_{1}+\bar{\Gamma}_{1}}=P_{1 \alpha}^{0} \varepsilon_{1} \geq \Delta P_{1 \alpha}(\Omega, U) / 2
$$

- Classic Kinetic Equations (in their simplest form)

$$
\begin{aligned}
& \frac{d N_{N_{1}}}{d z}=-D_{1}\left(N_{N_{1}}-N_{N_{1}}^{\mathrm{eq}}\right) \\
& \frac{d N_{\Delta_{\alpha}}}{d z}=-\varepsilon_{1 \alpha} \frac{d N_{N_{1}}}{d z}-P_{1 \alpha}^{0} W_{1} N_{\Delta_{\alpha}} \\
& \Rightarrow N_{B-L}=\sum N_{\Delta_{\alpha}} \quad\left(\Delta_{\alpha} \equiv B / 3-L_{\alpha}\right)
\end{aligned}
$$

$\Rightarrow N_{B-L}^{\mathrm{fin}}=\sum_{\alpha} \varepsilon_{1 \alpha} \kappa_{1 \alpha}^{\mathrm{fin}} \simeq N_{\mathrm{fl}} \varepsilon_{1} \kappa_{1}^{\mathrm{fin}}+\frac{\Delta P_{1 \alpha}}{2}\left[\kappa_{1 \alpha}^{\mathrm{fin}}-\kappa_{1 \beta}^{\mathrm{fin}}\right]$

The bounds get relaxed (Abada et al.' 07 Blanchet,PDB '08)
$\left|\Omega_{i j}^{2}\right| \lesssim 1$

PMNS phases off

Heavy neutrino flavour effects: \mathbf{N}_{2}-dominated scenario

(PDB '05)

If lepton flavour effects are neglected the asymmetry from the next-to-lightest $\left(\mathrm{N}_{2}\right) \mathrm{RH}$ neutrinos is typically negligible:

$$
N_{B-L}^{\mathrm{f}, \mathrm{~N}_{2}}=\varepsilon_{2} \kappa\left(K_{2}\right) e^{-\frac{3 \pi}{8} K_{1}} \ll N_{B-L}^{\mathrm{f}, \mathrm{~N}_{1}}=\varepsilon_{1} \kappa\left(K_{1}\right)
$$

...except for a special choice of $\Omega=R_{23}$ when $K_{1}=m_{1} / m_{*} \ll 1$ and $\varepsilon_{1}=0$:

$$
\Rightarrow N_{B-L}^{\mathrm{fin}}=\sum_{i} \varepsilon_{i} \kappa_{i}^{\mathrm{fin}} \simeq \varepsilon_{2} \kappa_{2}^{\mathrm{fin}} \quad \varepsilon_{2} \lesssim 10^{-6}\left(\frac{M_{2}}{10^{10} \mathrm{GeV}}\right)
$$

The lower bound on M_{1} disappears and is replaced by a lower bound on $M_{2} \ldots$ that however still implies a lower bound on $T_{\text {reh }}$!

N_{2}-flavored leptogenesis

(Vives '05: Blanchet, PDB '06: Blanchet, PDB '08)
Combining together lepton and heavy neutrino flavour effects one has

A two stage process:

Notice that the presence of the heaviest RH neutrino N_{3} is necessary for the CP asymmetries of N_{2} not to be negligible!

N_{2}-flavored leptogenesis

(Vives '05: Blanchet, PDB '06; Blanchet, PDB '08)

If (for definiteness) $M_{2} \gtrsim 10^{12} \mathrm{GeV} \Rightarrow$
$N_{B-L}^{\mathrm{f}}\left(N_{2}\right)=P_{2 e}^{0} \varepsilon_{2} \kappa\left(K_{2}\right) e^{-\frac{3 \pi}{8} K_{1 e}}+P_{2 \mu}^{0} \varepsilon_{2} \kappa\left(K_{2}\right) e^{-\frac{3 \pi}{8} K_{1 \mu}}+P_{2 \tau}^{0} \varepsilon_{2} \kappa\left(K_{2}\right) e^{-\frac{3 \pi}{8} K_{1 \tau}}$
Notice that $K_{1}=K_{1 e}+K_{1 \mu}+K_{1 \tau}$
Wash-out is neglected
Wash-out and flavor effects, are both taken into account

Unflavored case

Thanks to flavor effects the domain of applicability extends much beyond the particular choice $\Omega=R_{23}$!

More generally one has to distinguish 10 different RH neutrino mass patterns (Bertuzzo,PDB,Marzola '10)

For each pattern a specific set of kinetic equations has to be considered

Heavy flavored scenario

(Engelhard, Nir, Nardi '08 , Bertuzzo,PDB,Marzola '10)

 Assume $M_{i+1}>3 M_{i} \quad(i=1,2)$The heavy neutrino flavours basis is not orthogonal in general and this complicates the calculation of the final asymmetry

$$
\begin{aligned}
& p_{i j}=\left|\left\langle\ell_{i} \mid \ell_{j}\right\rangle\right|^{2} \quad p_{i j}=\frac{\left|\left(m_{D}^{\dagger} m_{D}\right)_{i j}\right|^{2}}{\left(m_{D}^{\dagger} m_{D}\right)_{i i}\left(m_{D}^{\dagger} m_{D}\right)_{j j}} . \\
& N_{B-L}^{\mathrm{lep}}\left(T_{B 1}\right)=N_{\Delta_{1}}^{\mathrm{lep}}\left(T_{B 1}\right)+N_{\Delta_{\mathrm{i}}}^{\mathrm{lep}}\left(T_{B 1}\right), \\
& N_{\Delta_{1}}^{\text {lep }}\left(T_{B 1}\right)=p_{21} p_{32} \varepsilon_{3} \kappa\left(K_{3}\right) e^{-\frac{3 \pi}{8}\left(K_{1}+K_{2}\right)} \\
& +p_{21} \varepsilon_{2} \kappa\left(K_{2}\right) e^{-\frac{3 \pi}{8} K_{1}} \\
& +p_{\tilde{2}_{31}}\left(1-p_{32}\right) \varepsilon_{3} \kappa\left(K_{3}\right) e^{-\frac{3 \pi}{8} K_{1}} \\
& +\varepsilon_{1} \kappa\left(K_{1}\right) \\
& N_{\Delta_{\mathrm{i}}}^{\mathrm{lep}}\left(T_{B 1}\right)=\left(1-p_{21}\right)\left[p_{32} \varepsilon_{3} \kappa\left(K_{3}\right) e^{-\frac{3 \pi}{8} K_{2}}+\varepsilon_{2} \kappa\left(K_{2}\right)\right] \\
& +\left(1-p_{\tilde{2}_{3}}\right)\left(1-p_{32}\right) \varepsilon_{3} \kappa\left(K_{3}\right)
\end{aligned}
$$

Some deviation from orthogonality (it is realized in form dominance models discussed in King's talk) is typically necessary since otherwise (e.g. with tri-bimaximal mixing) one would have vanishing CP asymmetries and therefore no asymmetry produced from leptogenesis (Antusch, King, Riotto '08; Aristizabal,Bazzocchi,Merlo,Morisi '09)

Heavy flavoured scenario in models with A4 discrete flavour symmetry

(Manohar, Jenkins'08;Bertuzzo,PDB,Feruglio,Nardi '09;Hagedorn,Molinaro,Petcov '09)

$m_{1} \simeq 5 \times 10^{-3} \mathrm{eV}$

$m_{i}=\frac{y^{2} v_{u}^{2}}{M_{j}}$
imposing successful leptogenesis

Symmetry Breaking parameter

${ }^{-}$The different lines correspond to values of y between 0.3 and 3

For each pattern a specific set of kinetic equations has to be considered

Baryogenesis and the early Universe history

The problem of the initial conditions in flavoured leptogenesi: (Bertuzzo,PDB,Marzola '10)
 external mechanism

The wash-out of a pre-existing asymmetry is guaranteed only in a N_{2}-dominated scenario where the final asymmetry is dominantly in the tauon flavour (loophole:in supersymmetric models(Antusch,King,Riotto'06) also in N_{1} dominated scenarios with $\tan ^{2} \beta \approx 20$)

This mass pattern is particularly interesting because it is just that one realized in SO(10) inspired models

SO(10)-inspired leptogenesis

(Branco et al. '02: Nezri, Orloff '02: Akhmedov, Frigerio, Smirnov '03) Expressing the neutrino Dirac mass matrix m_{D} (in the basis where the Majorana mass and charged lepton mass matrices are diagonal):

$$
m_{D}=V_{L}^{\dagger} D_{m_{D}} U_{R} \quad \text { (bi-unitary parametrization) }
$$

where $\quad D_{m_{D}}=\operatorname{diag}\left\{\lambda_{D 1}, \lambda_{D 2}, \lambda_{D 3}\right\}$
and
assuming:

1) $\lambda_{D 1}=\alpha_{1} m_{u}, \lambda_{D 2}=\alpha_{2} m_{c}, \lambda_{D 3}=\alpha_{3} m_{t}, \quad\left(\alpha_{i}=\mathcal{O}(1)\right)$
2) $V_{L} \simeq V_{C K M} \simeq I$
one typically obtains (barring fine-tuned exceptions):
$M_{1} \sim \alpha_{1}^{2} 10^{5} \mathrm{GeV}, M_{2} \sim \alpha_{2}^{2} 10^{10} \mathrm{GeV}, M_{3} \sim \alpha_{3}^{2} 10^{15} \mathrm{GeV}$
since $M_{1} \ll 10^{9} \mathrm{GeV} \Rightarrow \eta_{B}\left(N_{1}\right) \ll \eta_{B}^{C M B}$!
\Rightarrow failure of the N_{1}-dominated scenario !

YES: the N_{2}-dominated scenario rescues SO(10) inspired models ! (PDB, Riotto ${ }^{\circ 08,10)}$

$$
\xrightarrow{N_{B-L}^{f} \simeq \varepsilon_{2 e} \kappa\left(K_{2 e+\mu}\right) e^{-\frac{3 \pi}{8} K_{1 e}}+\varepsilon_{2 \mu} \kappa\left(K_{2 e+\mu}\right) e^{-\frac{3 \pi}{8} K_{1 \mu}+}+\varepsilon_{2 \tau} \kappa\left(K_{2 \tau}\right) e^{-\frac{8 \pi}{8} K_{17}}} \text { Independent of } \alpha_{1} \text { and } \alpha_{3} \quad \text { ! }
$$

$\begin{array}{llll}\alpha_{2}=5 & \alpha_{2}=4 & \alpha_{2}=3 & V_{L}=I\end{array}$
lower bound on Θ_{13}

Normal ordering

Vanishing initial N_{2} abundance

The model yields constraints on all low energy neutrino observables!
$V_{L}=I$

NORMAL
ORDERING

The reheating
$\mathrm{m}_{1}(\mathrm{eV}) \quad$ Yellow points: $\alpha_{2}=5$ temperature lower bound is $\sim 4 \times 10^{10} \mathrm{GeV}$ problem in SUSY

Green points: $\alpha_{2}=4$
Red star : $\alpha_{2}=3$
(PDB, Riotto '10)

correlation between Θ_{13} and Θ_{23}

Low values of the atmospheric angle are strongly favoured and maximal mixing is very marginally allowed and excluded for $\Theta_{13}<6^{\circ}$

Yellow points: $\alpha_{2}=5$
Green points: $\alpha_{2}=4$
Red star : $\alpha_{2}=3$

The model does not seem to predict necessarily CP violation in neutrino oscillations

On the other hand the Majorana phases play a crucial role

Effective Majorana mass small but non vanishing and unambiguosly related to m_{1}

A third encouraging coincidence!

(PDB, Riotto '10)

The scenario seems to like $\Theta_{13}<10^{\circ}$!

Blue points: $\alpha_{2}=4$ and mixing angles let free in $\left(0,60^{\circ}\right)$ Green points: $\alpha_{2}=4$ and current experimental constraints imposed on mixing angles

For the solution with $m_{1} \sim 3 \times 10^{-3} \mathrm{eV}$ the asymmetry is dominantly produced in the tauon flavour since $\epsilon_{2 \tau, \mu, e} \propto\left(m_{t, c, u}\right)^{2}$

For these solutions all conditions for a full independence of the initial confitions are fullfilled!

The model yields constraints on all low energy neutrino observables!

$V_{L}=I$

INVERTED ORDERING

$$
\begin{aligned}
& \alpha_{2}=5 \\
& \alpha_{2}=4.7
\end{aligned}
$$

$I<V_{L}<V_{C K M}$

NORMAL ORDERING

$$
\begin{aligned}
& a_{2}=5 \\
& \alpha_{2}=4 \\
& \alpha_{2}=1
\end{aligned}
$$

$\mathrm{I}<\mathrm{V}_{\mathrm{L}}<\mathrm{V}_{\mathrm{CKM}}$ NORMAL ORDERING $\alpha_{2}=5 \quad \alpha_{2}=4$
$\alpha_{2}=3.7 \quad m_{1}<0.01 \mathrm{eV}$

$I<V_{L}<V_{C K M}$

INVERTED ORDERING

$$
\begin{aligned}
& \alpha_{2}=5 \\
& \alpha_{2}=4 \\
& \alpha_{2}=1.5
\end{aligned}
$$

Conclusions

Leptogenesis is an important way to complement low energy neutrino experiments to test the see-saw mechanism since the high energy parameters are involved as well.

Leptogenesis+low energy neutrino experiments are still not sufficient to over-constraint the see-saw parameter space in a general case and ine has
i)either to look for additional phenomenologies (LFV processes ? EDM's?, collider physics ?)
or
ii) Restrict the parameter space imposing some assumption

For example $S O(10)$-inspired models are potentially predictive. They Are ruled out in a traditional N_{1}-dom scenario but when production from N_{2} neutrinos is taken into account they are viable and produce interesting constraints on the light neutrino mass matrix parameters

Additional contribution to CP violation:

$$
\varepsilon_{1 \alpha}=P_{1 \alpha}^{0} \varepsilon_{1}+\left(\frac{\Delta P_{1 \alpha}}{2}\right) \text { depends on U! }
$$

1) $\Gamma \neq \bar{\Gamma}$
 $\Rightarrow P_{1 \alpha}^{0} \varepsilon_{1}$
2) $\left|\vec{l}_{1}\right\rangle \neq C P\left|l_{1}\right\rangle$

Low energy phases as the only source of CP violation (Nardi et al: Blanchet,PDB, '06; Pascoli, Petcov, Riotto: Anisimov, Blanchet, PDB '08) The whole CP violation can stems just from low energy phases (Dirac, Majorana phases) and still it is possible to have successful leptogenesis!
initial thermal N_{1} abundance
(Blanchet, PDB '09)

independent of initial N_{1} abundance

Green points: only Dirac phase with $\sin \theta_{13}=0.2$

Red points: only Majorana phases

However, in general, we cannot constraint the low energy phases with leptogenesis and viceversa we cannot test leptogenesis just measuring CP violation at low energies: we need to add some further condition!
(Blanchet, PDB '06)

FULLY TWO-FLAVORED REGIME

NO FLAVOR

Puzzles of Modern Cosmology

1. Dark matter
2. Martier - antimatiter asymmetry
3. Inflation

Baryogenesis
4. Accelerating Universe
5. Extra ultrarelativistic degrees of freedom? $N_{\nu}^{\text {eff }}=4.3 \pm 0.85$ (wmap $\left.7^{\prime} 10\right)$
\Longrightarrow clash between the $S M$ and $\Lambda C D M$!

The total CP asymmetries can be calculated from :

It holds if:
Hierarchical RH neutrino spectrum

$$
M_{2} \gtrsim 100 M_{1}
$$

N_{3} does not interfere with N_{2}-decays:

$$
\begin{equation*}
\left(m_{D}^{\dagger} m_{D}\right)_{23}=0 \tag{PDB'05}
\end{equation*}
$$

under these two conditions

$$
\Rightarrow\left|\varepsilon_{2,3}\right|^{\max } \ll\left|\varepsilon_{1}\right|^{\max }
$$

Leptogenesis "conspiracy" (2)

$$
m_{\text {atm }}=10^{-5} \mathrm{eV}
$$

$$
m_{a t m}=0.05 \mathrm{eV}
$$

$$
m_{a t m}=10 \mathrm{eV}
$$

Leptogenesis and discrete flavour symmetries: A4

(Ma '04; Altarelli, Feruglio '05; Bertuzzo, Di Bari, Feruglio, Nardi '09;Hagedorn, Molinaro,Petcov '09)

$$
m_{1} \simeq 5 \times 10^{-3} \mathrm{eV}
$$

$$
m_{i}=\frac{y^{2} v_{u}^{2}}{M_{j}}
$$

$m_{1} \gtrsim 0.017 \mathrm{eV}$

The situation is less attractive than in $\mathrm{SO}(10)$ inspired models because the RH neutrino mass spectrum first requires very high temperatures, second it does not allow a wash-out of a pre-existing asymmetry

Leptogenesis in A4 models

(Ma '04: Altarelli, Feruglio '05; Bertuzzo, Di Bari, Feruglio, Nardi '09) However successful leptogenesis seems to be possible (better in the normal hierarchical case) just for the best values of the symmetry breaking parameters

Normal ordering

Inverted ordering

The different lines correspond to values of y between 0.3 and 3

Flavoured Boltzmann equations

$$
\begin{array}{ll}
P_{1 \alpha} \equiv\left|\left\langle l_{\alpha} \mid l_{1}\right\rangle\right|^{2}=P_{1 \alpha}^{0}+\Delta P_{1 \alpha} / 2 & \left(\sum_{\alpha} P_{1 \alpha}^{0}=1\right) \\
\bar{P}_{1 \alpha} \equiv\left|\left\langle\bar{l}_{\alpha} \mid \bar{l}_{1}^{\prime}\right\rangle\right|^{2}=P_{1 \alpha}^{0}-\Delta P_{1 \alpha} / 2 & \left(\sum_{\alpha} \Delta P_{1 \alpha}=0\right)
\end{array}
$$

These 2 terms correspond respectively to 2 different flavor effects:

1) wash-out is in general reduced: $K_{1} \rightarrow K_{1 \alpha} \equiv K_{1} P_{1 \alpha}^{0}$
2) additional $C P$ violating contribution $\left(\left|\bar{l}_{1}^{\prime}\right\rangle \neq C P\left|l_{1}\right\rangle\right)$

$$
\Rightarrow \quad \varepsilon_{1 \alpha} \equiv-\frac{P_{1 \alpha} \Gamma_{1}-\bar{P}_{1 \alpha} \bar{\Gamma}_{1}}{\Gamma_{1}+\bar{\Gamma}_{1}}=P_{1 \alpha}^{0} \varepsilon_{1}+\Delta P_{1 \alpha}(\Omega, U) / 2
$$

- Classic Kinetic Equations (in their simplest form)

$$
\begin{aligned}
& \frac{d N_{N_{1}}}{d z}=-D_{1}\left(N_{N_{1}}-N_{N_{1}}^{\mathrm{eq}}\right) \\
& \left.\frac{d N_{\Delta_{\alpha}}}{d z}=-\varepsilon_{1 \alpha} \frac{d N_{N_{1}}}{d z}-P_{1 \alpha}^{0}\right) W_{1} N_{\Delta_{\alpha}} \\
& \Rightarrow \quad N_{B-L}=\sum_{\alpha} N_{\Delta_{\alpha}} \quad\left(\Delta_{\alpha} \equiv B / 3-L_{\alpha}\right)
\end{aligned}
$$

The double side of Leptogenesis

Cosmology (early Universe)

- Cosmological Puzzles:

Neutrino Physics. New Physics

1. Dark matter
2. Matter - antimatter asymmetry
3. Inflation
4. Accelerating Universe

- New stage in early Universe history:
< $10^{14} \mathrm{GeV}$ - Inflation
T
100 GeV - EWSSB
0.1-1 MeV-BBN
$0.1-1 \mathrm{eV}$ — Recombination

Leptogenesis complements low energy neutrino experiments testing the
high energy parameters of the seesaw mechanism
\Rightarrow I \dagger provides a precious guidance to try to understand what kind of new physics is responsible for the neutrino masses and mixing

Beyond the type I seesaw

It is motivated typically by two reasons:

- Again avoid the reheating temperature lower bound
- In order to get new phenomenological tests....the most typical motivation in this respect is quite obviously whether we can test the seesaw and leptogenesis at the LHC

Typically lowering the RH neutrino scale at TeV, the RH neutrinos decouple and they cannot be efficiently produced in colliders

Many different proposals to circumvent the problem:

- additional gauged $\mathrm{U}(1)_{B-L}$ (King, Yanagida '04)
- leptogenesis with Higgs triplet (type II seesaw mechanism) (Ma,Sarkar '00 : Hambye,Senjanovic '03: Rodejohann'04; Hambye,Strumia '05: Antusch '07)
- leptogenesis with three body decays (Hambye '01)
- see-saw with vector fields (Losada, Nardi 07)
- inverse seesaw mechanism and leptogenesis (talk by R. Mohapatra)

Non minimal leptogenesis

Non thermal leptogenesis

The RH neutrino production is non-thermal and typically associated to inflation. They are often motivated in order to obtain successful leptogenesis with low reheating temperature.

- RH neutrino production from inflaton decays (Shafi,Lazarides' 91)
- Leptogenesis from RH sneutrinos decays (Murayama, Yanagida ' 93)
- RH neutrinos can also be produced at the end of inflation during the pre-heating stage (Giudice,Peloso,Riotto,Tkachev99)
-The connections with low energy neutrino experiments become even looser in these scenarios, while they can be made with properties of CMBR anisotropies (Asaka, Hamaguchi, Yanagida '99)

Improved kinetic description

- Momentum dependence in Boltzmann equations
(Hannestad ' 06; Hahn-Woernle, M. Plümacher, Y.Wong '09; Pastor, Vives'09)
- Kadanoff-Baym equations
(Buchmüller, Fredenhagen '01; De Simone,Riotto '07: Garny, Hohenegger, Kartavtsev,Lindner '09: Anisimov,Buchmüller, Drewes,Mendizibal '09;
Beneke, Garbrecht, Herranen, Schwaller '10)
The asymmetry is directly calculated in terms of Green functions instead than in terms of number densities and they account for offshell , memory and medium effects in a systematic way
At the moment all these analyses confirm what also happens for other effects (e.g. inclusion of scatterings) and that is expected: large theoretical uncertainties in the weak wash-out regime, limited corrections (O(1)) in the strong wash-out regime where the asymmetry is produced in a narrow range of temperatures for $T \ll M_{i}$ (Buchmüller,PDB,Plümacher

The degenerate limit

(Covi, Roulet, Vissani "96; Pilaftsis ' 97: Blanchet, PDB '06)
D ffereart possibilities, for excirspole: :
$\Rightarrow\left|\varepsilon_{3}\right| \ll\left|\varepsilon_{2}\right|,\left|\varepsilon_{1}\right|$ and $\kappa_{3}^{\text {fin }} \ll \kappa_{2}^{\text {fin }}, \kappa_{1}^{\text {fin }}$
CP asymmetries get enhanced $\propto 1 / \delta_{2}$
M_{2}
M_{1}

$\Rightarrow \mathbf{N}_{\mathrm{B}-\mathrm{L}}^{\mathrm{fin}}$

For $\delta_{2} \lesssim 0.01$ (degenerate limit)

$$
\left(M_{1}^{\mathrm{min}}\right)_{\mathrm{DL}} \simeq 4 \times 10^{9} \mathrm{GeV}\left(\frac{\delta_{2}}{0.01}\right) \quad \text { and } \quad\left(T_{\mathrm{reh}}^{\min }\right)_{\mathrm{DL}} \simeq 5 \times 10^{8} \mathrm{GeV}\left(\frac{\delta_{2}}{0.01}\right)
$$

The reheating temperature lower bound is relaxed The required tiny value of δ_{2} can be obtained e.g.
in radiative leptogenesis (Branco, Gonzalez, Joaquim, Nobre"04, "O5)

Flavor effects do not spoil the conspiracy

Green points: Unflavored

$$
m_{a t m}=10^{-5} \mathrm{eV}
$$

$$
m_{a t m}=0.05 \mathrm{eV}
$$

Red points: Flavored

$$
m_{a t m}=10 \mathrm{eV}
$$

....but they yield two interesting results:

A pictorial representation

Let us give a pictorial description focusing on the dominant Higgs asymmetry and disregarding the asymmetries in quarks and charged lepton singlets

Assume $K_{2 \alpha} \lesssim 1$ while $K_{2 \beta} \gg 1$

This β-asymmetry is induced by the "thermal contact" with the α-leptons via the Higgs

Production stage

We have to solve :

$$
\begin{aligned}
\frac{d N_{N_{2}}}{d z_{2}} & =-D_{2}\left(N_{N_{2}}-N_{N_{2}}^{\mathrm{eq}}\right), \\
\frac{d N_{\Delta_{\gamma}}}{d z_{2}} & =\varepsilon_{2 \gamma} D_{2}\left(N_{N_{2}}-N_{N_{2}}^{\mathrm{eq}}\right)-P_{2 \gamma}^{0} W_{2} \sum_{\alpha=\gamma, \tau} C_{\gamma \alpha}^{(2)} N_{\Delta_{\alpha}}, \\
\frac{d N_{\Delta_{\tau}}}{d z_{2}} & =\varepsilon_{2 \tau} \Delta_{2}\left(N_{N_{2}}-N_{N_{2}}^{\mathrm{eq}}\right)-P_{2 \tau}^{0} W_{2} \sum_{\alpha=\gamma, \tau} C_{\tau \alpha}^{(2)} N_{\Delta_{\alpha}} .
\end{aligned}
$$

Defining U as the matrix that diagonalizes: $\quad P_{2}^{0} \equiv\left(\begin{array}{cc}P_{2 \gamma}^{0} C_{\gamma \gamma}^{(2)} & P_{2 \gamma}^{0} C_{\gamma}^{(2)} \\ P_{2 \tau}^{0} C_{\tau \gamma}^{(2)} & P_{2 \tau}^{0} C_{\tau \tau}^{(2)}\end{array}\right)$

$$
U P_{2}^{0} U^{-1}=\operatorname{diag}\left(P_{2 \gamma^{\prime}}^{0}, P_{2 \tau^{\prime}}^{0}\right)
$$

The asymmetry at $T \sim M_{2}$ is then given by:

$$
\begin{aligned}
N_{\Delta_{\gamma}}^{T \sim M_{2}} & =U_{\gamma \gamma^{\prime}}^{-1}\left[U_{\gamma^{\prime} \gamma} \varepsilon_{2 \gamma}+U_{\gamma^{\prime} \tau} \varepsilon_{2 \tau}\right] \kappa\left(K_{2 \gamma}\right)+U_{\gamma \tau^{\prime}}^{-1}\left[U_{\tau^{\prime} \gamma} \varepsilon_{2 \gamma}+U_{\tau^{\prime} \tau} \varepsilon_{2 \tau}\right] \kappa\left(K_{2 \tau}\right), \\
N_{\Delta_{\tau}}^{T \sim M_{2}} & =U_{\tau \gamma^{\prime}}^{-1}\left[U_{\gamma^{\prime} \gamma} \varepsilon_{2 \gamma}+U_{\gamma^{\prime} \tau} \varepsilon_{2 \tau}\right] \kappa\left(K_{2 \gamma}\right)+U_{\tau \tau^{\prime}}^{-1}\left[U_{\tau^{\prime} \gamma} \varepsilon_{2 \gamma}+U_{\tau^{\prime} \tau} \varepsilon_{2 \tau}\right] \kappa\left(K_{2 \tau}\right), \\
N_{B-L}^{T \sim M_{2}} & =N_{\Delta_{\gamma}}^{T \sim M_{2}}+N_{\Delta_{\tau}}^{T \sim M_{2}} .
\end{aligned}
$$

Flavour coupling in the \mathbf{N}_{2}-dom.scenario

(Antusch, PDB, Jones, King '10)
Flavor coupling does not relevantly affect the final asymmetry In N_{1}-leptogenesis (Abada, Josse-Michaux '07) but a strong enhancement is possible in N_{2}-leptogenesis because here now there are three stages to be taken into account:

1) Production at $10^{12} \mathrm{GeV} \gg \mathrm{T} \sim \mathrm{M}_{2} \approx 10^{9} \mathrm{GeV}$ (2-flavour regime):

$$
\begin{aligned}
& \frac{d N_{N_{2}}}{d z_{2}}=-D_{2}\left(N_{N_{2}}-N_{N_{2}}^{\mathrm{eq}}\right), \\
& \frac{d N_{\Delta_{\gamma}}}{d z_{2}}=\varepsilon_{2 \gamma} D_{2}\left(N_{N_{2}}-N_{N_{2}}^{\mathrm{eq}}\right)-P_{2 \gamma}^{0} W_{2} \sum_{\alpha=\gamma, \tau} C_{\gamma \alpha}^{(2)} N_{\Delta_{\alpha}},(\gamma \equiv e+\mu) \\
& \frac{d N_{\Delta_{\tau}}}{d z_{2}}=\varepsilon_{2 \tau} \Delta_{2}\left(N_{N_{2}}-N_{N_{2}}^{\mathrm{eq}}\right)-P_{2 \tau}^{0} W_{2} \sum_{\alpha=\gamma, \tau} C_{\tau \alpha}^{(2)} N_{\Delta_{\alpha}} .
\end{aligned}
$$

3) Lightest RH neutrino wash-out at $T \sim M_{1} \ll 10^{9} \mathrm{GeV}$ (3-fl. regime):

$$
\frac{d N_{\Delta_{\alpha}}}{d z_{1}}=-P_{1 \alpha}^{0} \sum_{\beta} C_{\alpha \beta}^{(3)} W_{1} N_{\Delta_{\beta}}, \quad(\alpha, \beta=e, \mu, \tau)
$$

Lightest RH neutrino wash-out

We have to solve

$$
\frac{d N_{\Delta_{\alpha}}}{d z_{1}}=-P_{1 \alpha}^{0} \sum_{\beta} C_{\alpha \beta}^{(3)} W_{1} N_{\Delta_{\beta}}, \quad(\alpha, \beta=e, \mu, \tau)
$$

using as initial conditions $\quad N_{\Delta \beta}^{\mathrm{in}}=N_{\Delta \beta}^{T \sim M_{2}}$

If we first neglect the flavour coupling using the approximation $C^{(3)}=I$, then

$$
\frac{d N_{\Delta_{\alpha}}}{d z_{1}}=-P_{1 \alpha}^{0} W_{1} N_{\Delta_{\alpha}}, \quad(\alpha, \beta=e, \mu, \tau)
$$

This can be straightforwardly solved finding:

$$
N_{B-L}^{\mathrm{f}}=N_{\Delta_{e}}^{T \sim T_{M_{2}}} e^{-\frac{3 \pi}{8} K_{1 e}}+N_{\Delta_{\mu}}^{T \sim M_{2}} e^{-\frac{3 \pi}{8} K_{1 \mu}}+N_{\Delta_{\tau}}^{T \sim M_{2}} e^{-\frac{3 \pi}{8} K_{1 \tau}}
$$

Flavor swap scenario

(Antusch, PDB, Jones, King '10)
Suppose that at the production the $e+\mu(\gamma)$ flavour component of the asymmetry is weakly washed-out while the τ component is strongly washed-out. Then the latter can be considerably enhanced by flavor coupling:

$$
\begin{aligned}
N_{\Delta_{\tau}}^{T \sim M_{2}} & \simeq \varepsilon_{2 \tau} \kappa\left(K_{2 \tau}\right)-C_{\tau \gamma}^{(2)} \varepsilon_{2 \gamma} \kappa\left(K_{2 \gamma}\right) \simeq C_{\tau \gamma}^{(2)} \varepsilon_{2 \gamma} \kappa\left(K_{2 \gamma}\right) \\
N_{\Delta_{\gamma}}^{T \sim M_{2}} & \simeq \varepsilon_{2 \gamma} \kappa\left(K_{2 \gamma}\right)
\end{aligned}
$$

At the production the total asymmetry does not relevantly change (Abada, Josse-Michaux '07) but... a "flavor-swap" can be induced at the N_{1} wash-out if $K_{1 e}, K_{1 \mu} \gg 1, K_{1 \tau} \ll 1$
$\Rightarrow N_{B-L}^{\mathrm{f}}=N_{\Delta_{e}}^{T \sim T_{M_{2}}} e^{-\frac{3 \pi}{8} K_{1 e}}+N_{\Delta_{\mu}}^{T \sim M_{2}} e^{-\frac{3 \pi}{8} K_{1 \mu}}+N_{\Delta_{\tau}}^{T \sim M_{2}} e^{-\frac{3 \pi}{8} K_{1 \tau}} \simeq N_{\Delta_{\tau}}^{T \sim M_{2}} \simeq C_{\tau \gamma}^{(2)} \varepsilon_{2 \gamma} \kappa\left(K_{2 \gamma}\right)$
In this way the strong enhancement of the τ-asymmetry at the production translates into a strong enhancement of the final asymmetry

Flavour coupling at the \mathbf{N}_{1} wash-out

Let us now take into account flavour coupling at the N_{1}-wash-out as well:

$$
\frac{d N_{\Delta_{\alpha}}}{d z_{1}}=-P_{1 \alpha}^{0} \sum_{\beta} C_{\alpha \beta}^{(3)} W_{1} N_{\Delta_{\beta}}, \quad(\alpha, \beta=e, \mu, \tau)
$$

using as initial conditions $N_{\Delta \beta}^{\text {in }}=N_{\Delta \beta}^{T \sim M_{2}}$
We can repeat the same trick as before, i.e. introducing a matrix V that diagonalizes:

$$
P_{1}^{0} \equiv\left(\begin{array}{lll}
P_{1 e}^{0} C_{e}^{(3)} & P_{1 e}^{0} C_{e \mu}^{(3)} & P_{1 e}^{0} C_{e \tau}^{(3)} \\
P_{1 \mu}^{0} C_{\mu e}^{(3)} & P_{1 \mu}^{0} C_{\mu \mu}^{(3)} & P_{1 \mu}^{0} C_{\mu \tau}^{3} \\
P_{1 \tau}^{0} C_{\tau e}^{(3)} & P_{1 \tau}^{0} C_{\tau \mu}^{(3)} & P_{1 \tau}^{0} C_{\tau \tau}^{(3)}
\end{array}\right)
$$

One finally finds the general solution:

$$
N_{\Delta_{\alpha}}^{\mathrm{f}}=\sum_{\alpha^{\prime \prime}} V_{\alpha \alpha^{\prime \prime}}^{-1} e^{-\frac{3 \pi}{\delta} K_{1 \alpha^{\prime \prime}}}\left[\sum_{\beta} V_{\alpha^{\prime \prime} \beta} N_{\Delta_{\beta}}^{T \sim M_{2}}\right], \quad N_{B-L}^{f}=\sum_{\alpha} N_{\Delta_{\alpha}}^{\mathrm{f}}
$$

with $K_{1 \alpha^{\prime \prime}} \simeq \mathrm{K}_{1 \alpha}$

Circumventing the \mathbf{N}_{1} wash-out

Because of flavour coupling at the N_{1} wash-out there is another interesting effect. Let us "unpack" the previous general expression for example for the τ-asymmetry:

$$
\begin{aligned}
N_{\Delta_{\tau}}^{\mathrm{f}} & \simeq V_{\tau e^{\prime \prime}}^{-1}\left[\sum_{\beta} V_{e^{\prime \prime} \beta} N_{\Delta_{\beta}}^{T \sim M_{2}}\right] e^{-\frac{3 \pi}{\delta} K_{1 e}} \\
+ & V_{\tau \mu^{\prime \prime}}^{-1}\left[\sum_{\beta} V_{\mu^{\prime \prime} \beta} N_{\Delta_{\beta}}^{T \sim M_{2}}\right] e^{-\frac{3 \pi}{8} K_{1 \mu}} \\
& +V_{\tau \tau^{\prime \prime}}^{-1}\left[\sum_{\beta} V_{\tau \mu \beta} N_{\Delta_{\beta}}^{T \sim M_{2}}\right] e^{-\frac{3 \pi}{8} K_{1 \tau}}
\end{aligned}
$$

Now even though one has $K_{1 \tau} \gg 1$, there is still a final τ asymmetry that manages to escape the N_{1} wash-out. Why? Again because of the Higgs asymmetry present in the thermal bath that is not exactly that one needed for a complete wash-out of the τ asymmetry
\Rightarrow the lightest RH neutrino wash-out becomes less efficient!

Phantom terms

We have now to answer: how at the decoherence, at $\mathrm{T} \sim 10^{9} \mathrm{GeV}$,

$$
N_{\Delta_{\gamma}}^{T \sim M_{2}} \text { splits into } N_{\Delta_{\mu}}^{T \sim M_{2}} \text { and } N_{\Delta_{e}}^{T \sim M_{2}} ?
$$

First stage: $\mathrm{T} \gtrsim \mathrm{M}_{2}$ (decays) $\quad N_{\ell_{\tau}}$ Assume an initial thermal
N_{2}-abundance

Second stage: $T \sim M_{2}\left(N_{2}\right.$ - washout $)$
The N_{2} wash-out can only suppress the γ-asymmetry but it cannot chanae the flavour compositions of $\ell_{2 \gamma}$ and $\ell_{2 \gamma}^{\prime}$

| $\bar{\mu}$ | \bar{e} |
| :--- | :--- | $N_{\Delta \sim}^{T \sim M_{2}}$

Phantom terms

Third stage: $10^{9} \mathrm{GeV} \gtrsim \mathrm{T}^{\prime} \gg \mathrm{M}_{1}$ (3-flavour regime)

$$
\begin{array}{ll}
\underset{\substack{\boldsymbol{\mu}}}{\substack{N_{\Delta_{\mu}}^{T \sim M_{2}}}} \begin{array}{|c|}
\hline \overline{\boldsymbol{e}} \\
N_{\Delta_{e}}^{T \sim M_{2}}
\end{array}
\end{array}
$$

$N_{\Delta_{e}}\left(T^{\prime}\right)=p_{e}+\frac{f_{2 e}}{f_{2 e}+f_{2 \mu}} N_{\Delta_{\gamma}}^{T \sim M_{2}}, \quad N_{\Delta_{\mu}}\left(T^{\prime}\right)=p_{\mu}+\frac{f_{2 \mu}}{f_{2 e}+f_{2 \mu}} N_{\Delta_{\gamma}}^{T \sim M_{2}}$ $\simeq \kappa\left(K_{2 \gamma}\right) \varepsilon_{2 \gamma}$ (neglecting flavour coupling !)

Phantom terms

$$
\begin{aligned}
p_{e} & =\varepsilon_{2 e}-\frac{f_{2 e}}{f_{2 e}+f_{2 \mu}} \\
p_{\mu} & =\varepsilon_{2 \mu}-\frac{f_{2 \mu}}{f_{2 e}+f_{2 \mu}} \varepsilon_{2}=-p_{e}
\end{aligned}
$$

Notice that phantom terms are not suppressed by N_{2} wash-out!

Phantom Leptogenesis

We can have then a situation where $K_{2 \gamma,} K_{2 \tau} \gg 1$ so that at the End of the N_{2} washout the total asymmetry is negligible:

$$
N_{B-L}^{T \sim M_{2}}=N_{\Delta \tau}^{T \sim M_{2}}+N_{\Delta \gamma}^{T \sim M_{2}} \simeq 0!
$$

$10^{9} \mathrm{GeV} \gtrsim \mathrm{T} \gg \mathrm{M}_{1}$

$$
\begin{gathered}
\quad N_{B-L}^{T \sim M_{2}}=N_{\Delta \tau}^{T \sim M_{2}}+N_{\Delta e}^{T \sim M_{2}}+N_{\Delta \mu}^{T \sim M_{2}} \simeq 0! \\
\mathbf{T} \simeq \mathbf{M}_{\mathbf{1}} \quad \text { Assume } \mathrm{K}_{1 e} \lesssim 1 \text { and K } \mathrm{K}_{1 \mu} \gg 1 \\
N_{B-L}^{\mathrm{f}}=N_{\Delta e}^{T \sim M_{2}} \simeq p_{e}!
\end{gathered}
$$

The N_{1} wash-out un-reveal the phantom term and effectively it create a $\mathrm{N}_{\mathrm{B}-\mathrm{L}}$ asymmetry! There is nothing esoteric but there is a...

Drawback of phantom Leptogenesis

We assumed an initial N_{2} thermal abundance but if we were assuming An initial vanishing N_{2} abundance the phantom terms were just zero!

Therefore, more generally :

$$
p_{e}=\left(\varepsilon_{2 e}-\frac{f_{2 e}}{f_{2 e}+f_{2 \mu}} \varepsilon_{2}\right) N_{N_{2}}^{\mathrm{in}}
$$

The reason is that phantom terms with opposite sign would be created during the N_{2} production by inverse decays and exactly cancelling with the contribution generated from decays! More generally

In conclusionphantom leptogenesis is more a problem for the N_{2} dominated scenario since it introduces a strong dependence on the initial conditions!!

