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Abstract. We study field-driven domain wall motion in nanowires with perpendicu-

lar magnetic anisotropy using finite-element micromagnetic simulations. Edge rough-

ness is introduced by deforming the finite element mesh, and we vary the correlation

length and magnitude of the roughness deformation separately. We observe the Walker

breakdown both with and without roughness, with steady domain wall motion for ap-

plied fields below the critical Walker field Hc, and oscillatory motion for larger fields.

The value of Hc is not altered in the presence of roughness.

The edge roughness introduces a depinning field. During the transient depinning

process from the initial configuration to steady domain wall motion, the domain wall

velocity is significantly reduced in comparison to a wire without roughness. The

asymptotic domain wall velocity, on the other hand, is virtually unaffected by the

roughness, even though the magnetisation reacts to the edge distortions during the

entire course of motion, both above and below the Walker breakdown,

A moving domain wall can get pinned again at some later point (‘dynamic pinning’).

Dynamic pinning is a stochastic process and is observed both for small fields below Hc

as well as for fields of any strength above Hc. In the latter case, where the domain

wall shows oscillatory motion and the magnetisation in the domain wall rotates in the

film plane, pinning can only occur at positions where the DW reverses direction and

the instantaneous velocity is zero, i.e., at the beginning or in the middle of a positional

oscillation cycle. In our simulations pinning was only observed at the beginnings of

cycles, where the magnetization is pointing along the wire.

The depinning field depends linearly on the magnitude of the edge roughness. The

strongest pinning fields are observed for roughness correlation lengths that match the

domain wall width.

1. Introduction

To realise potential storage devices, such as racetrack memory (Parkin et al. 2008),

nanowires with low intrinsic pinning as well as nanowires with intended pinning sites

for individual domain walls are required. Real nanowires tend to exhibit a roughness at

their boundaries which introduces additional complexity. It is reasonable to distinguish
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between the surface roughness originating from the deposition process and the edge

roughness that stems from the lithography.

The influence of the latter has been studied for in-plane anisotropy and soft

materials (Nakatani et al. 2003), where a vortex-mediated breakdown localised at the

sample edges was found and it turned out that the edge roughness can significantly

affect the vortex nucleation and annihilation process that determines the behavior of

the domain wall. The influence of surface roughness on the domain wall propagation

process is also prominent in perpendicular magnetic anisotropy media (PMA) and has

been studied, e.g. using the magneto-optical Kerr effect (Metaxas et al. 2007, Kim

et al. 2009, Rodŕıguez-Rodŕıguez et al. 2010). It has been found that as the wire

width decreases, the magnetic domain wall dynamics change from elastic creep in two

dimensions to a particle-like stochastic behaviour in one dimension.

Often, pinning sites are desired and can be realised by geometric constrictions to

create local confining potentials that act as pinning sites for individual domain walls

(Kläui et al. 2005, Hayashi et al. 2006, Im et al. 2009, Bocklage et al. 2009). As

an alternative, the local modification of magnetic properties by ion irradiation, e.g.

by implanting Cr ions, is suitable to induce pinning sites (Vogel et al. 2010, Vogel

et al. 2011). In this case, a variation of the wire geometry on the nanoscale is

not required. The introduction of such magnetic soft spots is attractive due to

lower requirements on the lithography in comparison to geometric constrictions on

the nanoscale, a smaller distribution of properties due to parallel processing during

implantation, and fine tunability of the pinning potential via the chromium ion fluence.

It is important to understand the influence of the usually undesired edge roughness

to support work on domain wall propagation in wires without constrictions, with

constrictions, and with other intentionally created pinning centres. The role of disorder

in in-plane domain wall motion has been studied theoretically, including the effect of

edge roughness (Nakatani et al. 2003) and surface roughness (Min et al. 2010) on the

domain wall velocity, the interplay of extrinsic pinning with the critical current or field at

which the domain wall is depinned and starts to move (Tatara et al. 2006), the influence

of thermal excitations and roughness on domain wall motion (Martinez et al. 2007), and

domain wall velocity fluctuations due to edge pinning centers (Ryu & Lee 2009).

Surface roughness has been modelled through introduction of a set of pinning

centers for the domain wall (Tatara et al. 2006, Ryu & Lee 2009). To model edge

roughness in the context of finite difference simulations, complete simulation cells have

been removed from the micromagnetic sample edge (Martinez et al. 2007), introducing

disorder at the length scale of the cell size (of the order of 5 nm). Other works use

a Voronoi tessellation to model grains in the material, then remove grains from the

sample edge, and map this modified sample edge boundary onto the finite-difference

grid (Nakatani et al. 2003, Thiaville et al. 2005). The grains are adequately resolved if

they are larger than the cell size. To model surface roughness in thin films with finite

difference simulations, one can also vary the saturation magnetisation in each finite

difference cell instead of varying the height of the cells (Min et al. 2010). The length
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Figure 1. (Color online) (a) Initial Néel wall configuration, after relaxation. (b)

Convention of spherical coordinate system. (c) Domain wall profile.

scale of the surface roughness in this model cannot be smaller than the cell size but can

be chosen to be longer by varying the saturation magnetisation slowly in space.

In this work, we study the effect of edge roughness which originates from the

lithographic sample fabrication process on the domain wall propagation in perpendicular

magnetic anisotropy media. A finite-element spatial discretisation of the nanowire and

its edge roughness is used. In Sec. 2 we introduce the simulation model, geometry

and materials, roughness model and comment on the automated data analysis used.

We report simulation results for a smooth nanowire in Sec. 3, before extending the

simulation to include edge roughness in Sec. 4. We close with a summary in Sec. 5.

2. Method

All simulations are carried out using the micromagnetic simulation package

Nmag (Fischbacher et al. 2007, Nmag – a micromagnetic simulation environment

2007) developed at the University of Southampton, which employs a hybrid finite

element/boundary element method approach. For our purposes, an advantage over

finite difference-based discretisation is that this allows us to model the edge roughness

of the system more accurately using a tetrahedral mesh than would be possible with

cuboidal cells.

2.1. Geometry and Material

The system under consideration is a PMA nanowire with rectangular cross-section

and dimensions 1000 nm × 20 nm × 5 nm in x, y and z-axis directions, respectively.

The extremal corners have coordinates (0 nm, 0 nm, 0 nm) and (1000 nm, 20 nm, 5 nm).

We have deliberately chosen the wire width to be rather small so that the system

can be treated as effectively one-dimensional since the exchange interaction keeps

the magnetisation almost constant in y- and z-direction. Figure 1 shows the initial

configuration for which we set the magnetisation to point down (in negative z-direction)
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at the left end of the wire (i.e. at x = 0) and up at the other end, with a domain wall

located between the two uniform domains. This two-domain system with domain wall

is well described by two parameters: (i) the DW position and (ii) the azimuthal angle φ

of the magnetisation at the DW center. We use spherical coordinates to characterise the

orientation of the magnetisation at the centre of the DW, as shown in figure 1, where θ

is the vertical angle between M and the x-y-plane (polar angle), and φ is the horizontal

angle between M and the x-axis (azimuthal angle). In what follows, we are particularly

interested in the value of φ at the center of the DW, as this – together with the DW

position – captures the DW state. The angle φ will frequently be referred to as the

magnetisation angle of the DW.

Inspired by experimental studies (Tanigawa et al. 2009), we use the effective

material parameters of a multi-layered Co/Ni nanowire with saturation magnetisation

Ms = 6.8× 105 A/m, exchange coupling A = 1.3× 10−11 J/m and uniaxial anisotropy

constant K1 = 3.8× 105 J/m3. The resulting exchange length is
√

A/K1 = 5.85 nm,

the Gilbert damping parameter used is α = 0.032 (Burrowes et al. 2009).

2.2. Simulation Stages

Each simulation consists of two stages: a relaxation phase and the main simulation of the

domain wall dynamics. In the relaxation phase we initialise the magnetisation M in the

nanowire to a Néel-like pattern, with My = 0 everywhere, i.e., the magnetisation rotates

in the x-z-plane. The z-component Mz is initialised to tanh (
√

K1/A · (x− 200)), which

describes the domain wall pattern for a system when the demagnetising field is neglected,

with the DW center located at x = 200 nm.‡ This is then relaxed until it reaches a

metastable state as illustrated in figure 1, which takes into account exchange, anisotropy

and demagnetisation fields. The relaxation is carried out by numerical integration of

the Landau-Lifshitz-Gilbert equation. A large damping coefficient, α = 1.0, is used to

speed up the relaxation. The relaxed systems exhibits a Néel domain wall, as shown in

figure 1, to avoid surface charges on the edges which would be associated with a Bloch

wall.

Once equilibrium is reached the second stage is started. The damping is set to the

realistic value, α = 0.032, and a constant external field Hext is applied along the z-axis.

The response of the magnetisation is then computed for 20 ns. Every 0.1 ns the domain

wall position (along the x-axis) is computed by finding the zero-crossing of θ along the

nanowire axis. This is done by probing θ at 2000 auxiliary nodes along this line and

determining the two adjacent nodes where a sign change occurs. Then θ is interpolated

linearly between these adjacent nodes to determine the position of the zero-crossing.§

‡ Control simulations suggest that boundary effects are negligible further than ≈ 150 nm away from

the ends of the nanowire. In this work no data of domain walls outside this range was used.
§ The determination of the zero-crossing uses a Python function which is given to the simulation

framework with the instruction to call it every 0.1 ns during the computation, which avoids storing all

the field data for later postprocessing. The integration of the micromagnetic simulation tool into an

existing programming language thus simplifies data capture and analysis here (Fischbacher et al. 2009).
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Figure 2. (Color online) (a) Smooth mesh. For this mesh there are three layers

of tetrahedra in z-direction representing the film thickness of 5 nm and 15 layers in

y-direction extending 20 nm. Only a part of the mesh of the wire is shown in the

x-direction. (b) Rough version of the same mesh (with correlation length c = 2 nm

and distortion amplitude d = 0.4 nm).

Moreover, at the position of the DW center the magnetisation angle φ is recorded and

both the domain wall position and magnetisation angle, together with the current time

step, are written to an output file for subsequent analysis.

2.3. Roughness Model

In this work, we use a finite element-based discretisation of space. This allows to model

rough edges explicitly using a distorted finite element mesh. We start from a smooth

tetrahedral mesh as shown in figure 2 (a) with dimensions 1000 nm × 20 nm × 5 nm,

which is subsequently distorted at front and rear edges as shown in figure 2 (b). In the

following, the term edge or edge surface always refers to the two surfaces of dimensions

1000 nm× 5 nm at the the long edges of the wire parallel to the x-z plane.

The overall distortion process works as follows. We first construct a ‘distortion

function’ f(x). This function specifies the amount by which each node lying on the front

edge surface of the mesh (where y = 0 nm) is displaced in y-direction, as a function of

the x-coordinate of the node. Analogously, the nodes at the rear edge surface (where

y = 20 nm) are displaced using a second, independently constructed distortion function

g(x) so that both edges of the mesh are distorted differently. The positions of the
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internal mesh nodes are then rescaled in order to fit between the new distorted sides.

The distortion functions f and g are constructed as follows. First we pick

equidistant positions xi along the x-axis. These are just auxiliary entities and completely

independent of the actual mesh nodes. The distance between two neighbouring auxiliary

nodes is referred to as the correlation length c of the distortion. Next, random values

f(xi) and g(xi) are assigned to each position xi, chosen from a Gaussian distribution

with mean 0 and standard deviation d, which is referred to as the distortion amplitude

of the roughness or simply as the roughness level. Finally, the random values f(xi) and

g(xi) are interpolated smoothly to obtain the continuous distortion functions f(x) and

g(x). The whole process is illustrated in figure 3. In order to make the randomisation

reproducible, it is possible to specify a seed for the internal random number generator.

This allows us for a given c to produce meshes with the same ‘shape of roughness’

but different roughness amplitudes: the distortion functions of these meshes are just

scaled versions of each other. We introduce the distortion functions f and g, rather

than displaceing the mesh nodes on the edges randomly and thus independently of each

other, in order to be able to control the roughness correlation length independently of

the actual mesh discretization (assuming that the edge length of the tetrahedra for the

chosen mesh discretisation is smaller than the correlation length c).

The effective roughness length scale, which we define as the average width of the

peaks and troughs of the rough edge, or – equivalently – the distance between adjacent

local minima in f(x) and g(x), is larger than the correlation length c as visible in

figure 3 (b). Statistical analysis of this effective roughness length scale for a range of

disorder functions f(x) and g(x) shows that the effective roughness length is given by

≈ 2.76c (see figure 3 (d)).

There are several conceivable ways of modelling edge roughness, including locally

varying material parameters or Voronoi cell approaches, as mentioned in Sec. 1. The

method used here models the kind of roughness associated with irregularities in the

sample geometry originating from electron beam lithography, due to the remaining jitter

of the electron beam around a zero position. The amount of this jitter is modelled by the

roughness amplitude d. Depending on the speed of the beam along the edge this jitter

is ‘spread out’ over a certain distance, which is modelled by the correlation length c. We

note, however, that there is a second source of roughness due to the chemical process

of transferring the latent image of the nanowire after exposure, which involves rather

long-chain molecules. Unless special care is taken this is usually the dominant source of

roughness.

2.4. Data Analysis

We have carried out over 24,000 simulations where we systematically vary the external

field strength H , roughness correlation length c, and roughness amplitude d. For each

configuration, i.e. combination of the three parameters (H, c, d), we carry out one

simulation run. Each simulation run produces an output file containing data recorded
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Figure 3. (Color online) Illustration of the edge distortion process, showing a top

view of the rear edge of the nanowire. (a) Original mesh. (b) Construction of the

distortion function g with certain correlation length and distortion amplitude. (c) The

mesh after distortion with g. The contour of the distorted mesh follows the outline

of g. (d) Distribution of the distances between adjacent local minima. The data was

gathered from a collection of 1000 different distortion functions, each produced with

a different randomisation seed at the fixed correlation length c = 10 nm. The mean

distance is 27.6 nm = 2.76× c, which defines the effective roughness length scale.

every 0.1 ns between 0 ns and 20 ns. For each of the time steps the corresponding

computed domain wall position and the magnetisation angle φ inside the domain wall

are recorded.

The main observable we are interested in for each configuration is the DW velocity

vx(t), which is derived from the DW position rx(t) as a function of time. All other

quantities, such as the depinning field for a given roughness level, can be computed from

this. Our simulation results of a smooth nanowire in Sec. 3 and a nanowire with edge

roughness in Sec. 4 agree qualitatively with Walker’s prediction (Schryer & Walker 1974)

that there is steady domain wall motion for applied fields H below a critical field Hc,

and oscillatory motion for larger applied fields. We need to distinguish between these

two regimes to apply appropriate methods to compute the domain wall velocity. To do

this, we use the angle φ as the criterion: in the steady-motion regime the magnetisation
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angle φ approaches an asymptotic value |φ| < π

2
, whereas in the oscillatory regime the

magnetisation inside the DW keeps precessing indefinitely, so that |φ| grows to infinity.

2.4.1. Mean velocity The simplest way to compute the domain wall velocity is to

subtract the initial domain wall position rx(t0) at time t0 from the final position rx(tf)

at time tf , and to divide by the time it took to travel that distance:

vmean
x =

rx(tf)− rx(t0)

tf − t0
(1)

Later analysis in Sections 3 and 4 shows, however, that the initial depinning process of

a domain wall is qualitatively different from the subsequent domain wall motion: during

the depinning process, the domain wall increases its velocity from zero to an asymptotic

value for fields below the Walker breakdown, or asymptotic periodic behaviour for fields

above the Walker breakdown. As this increase does not happen instantaneously, the

transient process will reduce the mean velocity in the steady-motion regime if computed

using (1). The decrease will depend on the simulated time: the longer we run the

simulation, the smaller the reduction of vmean
x due to the initial transient, and the less

do mean and asymptotic velocities differ. Moreover, for oscillatory motion there can be

some variation in the mean velocity as computed using (1) depending on how much of

the last oscillation cycle is completed when the simulation exits.

2.4.2. Asymptotic velocity We thus use another method to compute the domain wall

velocity, which eliminates the reduction of vmean
x due to the initial transient and removes

artefacts due to incomplete oscillation cycles. To distinguish from the mean velocity,

we refer to this as the asymptotic velocity.

In the oscillatory case we identify the time and position of the DW at the beginning

of each oscillation cycle, i.e. when the angle φ is a multiple of π. Using a least-squares

approximation we then fit a line through these position as a function of time, and

compute the velocity as the slope of the fitted line as shown in figure 4 (a).‖ The initial

depinning transient is negligible for external fields above Hc and therefore does not affect

the calculation of the asymptotic velocity in this regime.

For applied fields below the Walker breakdown, the domain wall shows non-

oscillatory motion. To eliminate the initial transient from the data analysis in this

regime, we identify the first time t1 and domain wall position rx(t1) from which onwards

the plot of domain wall position as function of time shows an approximately linear

dependence. We then compute the velocity as

vasymptotic
x =

rx(tf)− rx(t1)

tf − t1
(2)

‖ Contrary to the usual convention, in this paper we plot time t along the vertical axis and the DW

position x along the horizontal axis. This is consistent with the orientation of the nanowire in figures 1,

2, 7, and allows better comparison between plots in the same figure. With this convention the velocities

of the domain walls are actually given by the inverse slope of the trajectories in these figures. Hence

a steeper line indicates a slower domain wall since it moves less far along the x-axis during the course

of the simulation.
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Figure 4. (Color online) Illustration of the computation of the asymptotic domain

wall velocity. (a) In the oscillatory case, the positions and times for the beginning

of each oscillation cycle are identified, and a line is fitted through them (dashed blue

line). The line’s slope provides the velocity. (b) In the steady-motion regime below

the Walker breakdown field, we identify the beginning of the first straight segment in

the plot (thickened red part), and take the position and time of this point, together

with the last position and time, to compute the asymptotic velocity. The interpolated

points for both cases are marked with blue dots in both plots.

We identify segments of the rx(t) function where the DW exhibits approximately straight

motion by using a Savitzky-Golay filter (Press et al. 1992, Ch. 14.8). This computes for

each recorded time step the second derivative of a smoothed version of the trajectory,

which gives an indication of the curvature of the trajectory at that point. By discarding

points where the second derivatives are above a given threshold we identify one or more

segments where the DW exhibits approximately straight motion as shown in figure 4 (b)

(segments marked with thick red lines).

2.4.3. Pinning Using these tools, we can also identify when a domain wall (i) is never

depinned, or (ii) gets pinned again after having moved a certain distance (dynamic

pinning). In case (i), we record the domain wall velocity as zero for both vmean
x and

vasymptotic
x . In case (ii), we compute the mean velocity vmean

x using (1) but record no

velocity for vasymptotic
x as the motion is too irregular to estimate the asymptotic velocity.

3. Smooth Nanowire

In the following we give a summary of the dynamics of perpendicular domain walls in

a smooth nanowire in external fields. These results present the reference for the rough

nanowire studied in section 4.
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Figure 5. (Color online) (a) Sample DW trajectories for different applied fields H :

steady (thick blue lines) and oscillatory (thin red lines). (b) The corresponding

magnetisation angles φ.

The external field Hext is applied along the negative out-of-plane z-direction (see

Figure 1). The domain wall then moves to the right, i.e. along the positive x-direction.

This behaviour can be understood in terms of energy minimisation: the domain wall

moves to the right to allow the left domain to grow. Indeed, a wider left domain

corresponds to an “increased” alignment of the magnetisation to the applied field and

a reduction of the Zeeman and total energy.

Figure 5 (a) shows the position of the domain wall against time for four different

applied field strengths. We see that the domain wall starts to move as the field is

applied, in all the considered cases. For the two lower fields (blue thick lines), the

motion is ‘steady’, with velocity increasing with the applied field. In contrast, for the

two higher applied fields (thin red lines) the motion of the domain wall is oscillatory.

The domain wall moves backwards and forwards as a function of time, but moves further

forward than backward in each cycle, leading to a net positive velocity. The frequency

of the oscillation depends on the external field strength, and is higher for the larger

external field (dashed thin line), while the net velocity is lower for the larger external

field.

Figure 5 (b) shows the magnetisation angle at the DW centre, φ, against time for

the same simulations considered in figure 5 (a). For the steady motion curves (thick

lines), φ changes from zero at time t = 0 to a very small negative value and then

remains constant. In the oscillatory regime (thin lines), φ behaves differently: it grows

continuously as a function of time, and grows the faster the higher the applied field is.

For the steady-motion curves considered in figure 5 the angle is small because the fields
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Figure 6. Domain wall position (top) and domain wall velocity (bottom) as a function

of magnetisation angle φ forH = 3.8 kA/m in the oscillatory regime. The figure should

be read ’from right to left’ because the angle φ increases in the negative direction during

the DW motion.

are weak; for fields close to Hc the asymptotic angle can become quite large until at Hc

it reaches −π

2
and ‘tips over’ so that it can keep growing grow continuously.

Figure 6 combines the data from the two previous plots and shows domain wall

position (top) and velocity (bottom) as a function of the magnetisation angleφ for the

H = 3.8 kA/m curve in figure 5. The figure should be read ’from right to left’ because

the angle φ increases in the negative direction during motion. We can see that the

domain wall position increases as φ grows from 0 to −π

2
and that the velocity remains

positive in this interval. From φ = −π

2
the domain wall moves backwards until φ = −π,

at which point the cycle repeats. We note that φ changes by −π (not −2π) while the

domain wall position completes an oscillation cycle, so that the magnetisation in the

domain wall centre points in the negative x direction at the end of the positional cycle

(i.e. φ = −π) whereas it was pointing in the positive x direction at the beginning. After

one more positional cycle the angle also returns to the original position, so that the DW

position completes two cycles during a full rotation of the magnetisation angle.

Figure 7 shows a set of corresponding magnetisation configurations for different

magnetisation angles φ. We use these figures to interpret the oscillatory motion.

Starting from figure 7 (a), the applied external field forces the magnetisation to precess so

that φ changes from 0 to a negative value. The configuration in figure 7 (a), resembles a

Néel wall which has no surface charges on the front and back edge of the wire. However,

once the magnetisation in the domain wall starts to rotate in the x-y plane, surface

charges start to appear on the sides of the wire as in figure 7 (b). These increase the

demagnetisation energy of the system, and energy has to be found to allow this change.

This energy is provided through the Zeeman term by growing the left domain in the
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Figure 7. (Color online) Snapshots of a domain wall moving in a smooth nanowire

(Hext = 9 kA/m > Hc). The pictures show half a rotation of the first oscillation,

with time increasing from top to bottom. (a) The initial configuration, cf. figure 1.

(b) The domain wall moves to the right as the magnetisation angle φ precesses around

the vertical axis. (c) At φ = π

2
the DW reverses direction and (d) starts moving to

the left. (e) At φ = π another reversal of direction occurs and the DW moves to the

right again. The same procedure repeats itself with two more direction reversals at

φ = 3/2π and φ = 2π (both not shown) until the angle φ has completed a full turn and

the DW starts its third oscillation. Large superimposed arrows indicate velocity of the

domain wall. The thin curly arrows indicate the direction of rotation of the magnetic

moments in the domain wall.
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wire: both magnetisation and applied field point in the negative z direction in this

domain. Growing the domain on the left means that the domain wall needs to move to

the right, i.e. towards larger x values. The further φ grows towards −π

2
, the further the

domain wall needs to move.

For weak applied fields, the growing demagnetisation field can counteract the

precession torque from the applied field and the system settles into a steady state with

fixed angle φ in which the domain wall moves continuously towards larger x-values

(thick lines in figure 5). For large applied fields, however, φ eventually reaches −π

2
,

corresponding to snapshot 7 (c) where the magnetisation is pointing in the negative y

direction, which is best visible in the centre of the domain wall. While φ increases

further from −π

2
to −π, the surface charges reduce and thus the demagnetisation energy

is reduced. This is compensated by the domain wall moving back to the left to shrink the

domain on the left that is aligned with the applied field, as shown in figure 7 (d). When

φ reaches −π, the surface charges have disappeared and the cycle will start again in a

mirror-symmetric way, explaining why the domain wall moves backwards and forwards

twice while φ increases from 0 to −2π.

If there was no damping in this system (i.e. α = 0), the domain wall would

move back to its starting position when φ reaches multiples of π. It is the damping

term that allows to release energy from the system, and this results in a net motion

of the domain wall in the positive x direction due to the applied field in the negative

z direction. We also note that if the simulations are carried out without consideration

of the demagnetising field, then the oscillations in the domain wall position cannot be

observed.

We thus find two different domain wall motion regimes: steady motion for applied

fields H below the so-called Walker breakdown field Hc and oscillatory motion for

H > Hc (Schryer & Walker 1974). Figure 8 shows the DW velocity as a function of the

external field. In a smooth system as simulated here, i.e. in the absence of any domain

wall pinning due to roughness, the domain wall starts to move if any non-zero external

field is applied. In line with Walker’s prediction the domain wall velocity increases with

the applied field up to the Walker breakdown field Hc at which the velocity reaches

its maximum. For larger applied fields, the domain wall velocity decreases. Sample

simulations with field strengths much larger than Hc have shown that the DW velocity

assumes a minimum aroundH = 30 kA/m and increases again for even stronger external

fields.

4. Nanowire with edge roughness

In this section we introduce edge roughness to the wire geometry and repeat the

simulations of field driven domain wall motion from section 3 in the presence of this

disorder. The relaxation stage of the simulations (section 2.2) allows the domain wall

to settle into an energetically favourable position that takes the edge roughness into

account, which may thus deviate slightly from the position in the smooth case. As a
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Figure 8. Domain wall velocity as a function of Hext. The separation into two regimes,

one above and one below the Walker breakdown, is clearly distinguishable. The inset

shows the increase of the velocity for very strong fields ≫ Hc (note the different scale).

result, the system needs a certain applied field strength to depin the domain wall from

this location and cause the domain wall to move. In this section we investigate how the

edge roughness affects the domain wall motion (section 4.1), the domain wall velocity

(section 4.2) and the depinning field (section 4.3).

4.1. Domain wall motion

We discuss the effect of roughness on domain wall motion for applied fields H below

(section 4.1.1) and above (section 4.1.2) the Walker breakdown field Hc separately.

4.1.1. Influence of the roughness below the Walker breakdown Figure 9 (a) shows some

typical domain wall trajectories in nanowires with different strengths of edge roughness

in a fixed external field H = 0.6 kA/m. One additional trajectory for a different field

strength H = 0.5 kA/m (dotted curve) was included to illustrate dynamic pinning. The

roughness correlation length is fixed at c = 4 nm whereas the roughness magnitude

varies between d = 0 nm (smooth wire) and d = 0.06 nm; for clarity, the curves for

some intermediate values of d have been omitted in the figure. The same randomisation

seed was used in all cases so that the shape of the edge distortions is the same and only

the amplitude d varies. The particular edge roughness profile used is displayed at the

top of the figure: we see the distortions introduced by the roughness functions f(x) and

g(x) as introduced in section 2.3. For visibility, the vertical extents of the distortions

f(x) and g(x) are scaled up in this plot. As mentioned previously, we plot the domain

wall position x along the horizontal axis. This allows us to compare the domain wall

trajectories with the roughness profile that the domain wall centre is located in.

The trajectory in the smooth wire (dashed curve) shows the same characteristics as

the ones discussed in section 3: it takes the domain wall ≈ 3 ns to reach its full speed,

during which time the magnetisation angle φ increases and approaches its asymptotic
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Figure 9. (Color online) (a) Sample trajectories in a constant external field

Hext = 0.6 kA/m < Hc for varying roughness magnitudes d. The roughness correlation

length is fixed at c = 4 nm. One additional trajectory for a different field strength

H = 0.5 kA/m (dotted curve) was included to illustrate dynamic pinning. The

particular edge roughness profiles used in these simulations is shown as an inset

towards the top: the roughness has been scaled up along the vertical axis to make

the profile visible more easily. (b) Time evolution of the magnetisation angle φ for

selected trajectories d = 0 nm (dashed) and d = 0.06 nm (solid) at Hext = 0.6 kA/m

and d = 0.05 nm at Hext = 0.5 kA/m (dotted).

value as can be seen in figure 9 (b). Once this is reached so that the surface charges on the

sides of the wire balance the torque which the external field exerts on the magnetisation

inside the DW, the DW moves along the nanowire with constant velocity.

The trajectories for non-zero roughness show two marked differences in comparison

to the smooth system. Firstly, it takes a longer time for the domain wall to depin and

for the angle φ to approach its asymptotic value. The effect is the stronger the greater

the roughness magnitude d as shown by solid lines in figure 9 (a). For d = 0.02 nm the

effect is small and the DW reaches its full speed after ≈ 4 ns. For d = 0.06 nm this

initial phase takes ≈ 8 ns — almost triple the time of the domain wall in the smooth

nanowire (d = 0 nm). For d = 0.06 nm, we can see from Figures 9 (a) and (b) that the

DW reacts to the edge distortions between the x = 200 nm and x = 250 nm during this

initial transient.

The second difference between the trajectories in the smooth and the rough
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nanowires is that we observe local decelerations of the DW during the motion in the

presence of edge roughness. In the examples shown in figure 9 (a) these manifest

themselves as bumps in the curves and occur at x ≈ 380 nm and x ≈ 640 nm. For

the lower roughness magnitudes (d = 0.02 nm, 0.04 nm) these are hardly noticeable,

whereas for d = 0.05 nm and 0.06 nm they become visible. However, for the largest

part of the motion the DW couples very weakly to the edge distortions and the curve is

effectively straight (corresponding to constant velocity) with the velocity being virtually

the same as in the smooth nanowire in these sections between the decelerations. If the

driving field is too weak then the DW can get dynamically pinned during one of these

decelerations. This is illustrated by the dotted curve in figure 9 (a).

In order to gain a better understanding of these two phenomena it is helpful to

look at the magnetisation angle φ inside the DW. Figure 9 (b) shows the time evolution

of φ as the DW progresses along the nanowire. In the smooth system (dashed curve)

φ gradually increases from zero until it reaches its asymptotic value and then remains

constant. For d = 0.06 nm (solid line) the angle φ shows a much more erratic behaviour

as a function of time as the magnetisation reacts to the edge distortions in an attempt

to minimise the surface charges at the sides. The value of φ for the domain wall in the

wire with d = 0.06 nm approaches the asymptotic value of φ in the smooth system at

t ≈ 8 ns. For larger values of t the angle φ shows small, apparently random deviations

from this value. There are two exceptions at t ≈ 11 ns and t ≈ 19 ns where |φ| gets

close to zero, resulting in two larger spikes in the dashed curve. These correspond to

the two local decelerations visible in figure 9 (a).

The dotted curve shows the time evolution of φ in the slightly weaker field

H = 0.5 kA/m, corresponding to the dotted trajectory in figure 9 (a). The way in

which φ reacts to the edge distortions during the first half of the simulation is virtually

identical toH = 0.6 kA/m, except that the changes happen more slowly due to the lower

driving field. Thus the first half of the dotted curve in figure 9 (b), before t = 12 ns,

is just a slightly vertically stretched version of the solid curve. The DW reaches the

pinning site x ≈ 380 nm at t ≈ 11 ns in the stronger field (solid curve) and at t ≈ 13 ns

in the weaker field (dotted curve). In the first case the field is strong enough to push

the DW past the pinning site, which only results in a small spike towards zero of the

angle. For the weaker field, on the other hand, the DW gets pinned and φ slowly relaxes

back into the zero-position where the magnetisation points along the nanowire axis.

4.1.2. Influence of the roughness above the Walker breakdown Figure 10 (a) shows three

trajectories of domain walls in an external field H = 5.75 kA/m > Hc. The roughness

correlation length c = 4 nm is fixed and only the roughness magnitude d varies between

0.3 nm and 0.5 nm. All trajectories show the oscillatory motion typical of fields H > Hc.

In the absence of roughness (i.e. d = 0.0 nm), all three curves would coincide.

The trajectory for the smallest roughness magnitude d = 0.3 nm (dashed red curve)

is the most regular of the three and still quite similar to the trajectory in the smooth

wire (not shown to avoid clutter in the plot). For the next larger value of roughness
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Figure 10. (Color online) (a) Sample trajectories in a constant external field

Hext = 5.75 kA/m for varying roughness magnitudes d. The roughness correlation

length is fixed at c = 4 nm. The inset at the top shows the profile of the nanowire with

roughness as in figure 9. (b) Time evolution of the magnetisation angle φ for these

trajectories.

magnitude d = 0.4 nm (dotted blue curve) the edge distortions around x = 230 nm result

in one short cycle with two quick direction reversals during the first 2 ns. Subsequently,

the DW performs two larger position oscillation cycles before it gets caught by a pinning

site at x = 261 nm and relaxes into a metastable state at this location. For the largest

value shown in the plot, d = 0.5 nm (solid green curve), the domain wall reacts even

more strongly to the edge roughness around x = 230 nm, this time performing four

quick direction reversals during the first 2 ns, before it continues in a fashion similar to

the dashed curve (d = 0.3 nm).

The x-positions where the domain wall reverses direction during the oscillations

in each of the trajectories are not arbitrarily distributed along the nanowire. Rather,

the direction reversals nearly always fall into a constriction of the wire. The dashed

black vertical line at x = 357 nm indicates one example where four direction reversals

at different time steps in two trajectories (marked with green and red dots) fall into the

same constriction. The same applies to virtually all other cycles in the three curves.

This shows that the DW couples rather strongly to the edge distortions at the left and

right turning points of the domain wall position cycles. Thus individual cycles can be

lengthened or shortened as the DW reacts to the roughness, which accounts for the
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alterations in the trajectories visible for higher roughness strengths. By contrast, the

edge distortions do not have a noticeable influence on the motion in the middle of a

cycle.

For d = 0.4 nm the DW gets dynamically pinned at x = 261 nm, whereas pinning

does not occur for the smaller roughness magnitude d = 0.3 nm nor the larger one

d = 0.5 nm. Similarly, other simulation runs at a fixed roughness magnitude d have

shown that it is possible for the DW to get dynamically pinned in an external field of a

certain strength while no pinning occurs for higher or lower fields.

We explain these observations by studying how the magnetisation angle φ in the

domain wall couples to the edge distortions in the nanowire in the next section.

4.1.3. Discussion Dynamic pinning occurs where the total energy of the domain wall

can be reduced by moving it into the pinning position. The domain wall carries a certain

exchange and anisotropy energy which grow proportionally with the length (extension

in y-direction) of the domain wall. The domain wall energy can thus be reduced if it

moves to locations where the edge distortions on both sides of the nanowire collude to

form a constriction, and thus reduce the length of the domain wall. For example, the

domain wall for d = 0.4 nm that is shown as a dotted line in figure 10 (a) is dynamically

pinned at x ≈ 261 nm, and we see a constriction in the roughness profile which is shown

as an inset in the top of the figure.

Above the Walker breakdown, the angle φ keeps growing, which reflects the rotation

of the magnetisation in the x-y-plane during the oscillatory motion of the domain wall;

the displacement of the domain wall and the change in φ are coupled as described in

section 3 and visible in figure 6. For φ = nπ with n = 0,±1,±2, . . ., the domain wall

magnetisation points along the wire and there are no surface charges along the edges

associated with the domain wall, so the demagnetisation energy of the domain wall is

minimal. Conversely, for φ = (n + 1
2
)π the magnetisation points in ±y direction, and

this maximises the demagnetisation energy associated with the domain wall. Between

those extrema the energy varies continuously. The increase in demagnetisation energy

due to φ changing from, say, 0 to π

2
is large in comparison to the energy fluctuations

caused by the edge roughness, such as the decrease in energy due to a reduced domain

wall length in a constriction.

Therefore the domain wall only interacts with the roughness where the energy

reduction caused by a constriction is of a magnitude comparable to the change in

the demagnetisation energy associated with a small displacement of the domain wall,

or equivalently a small change in φ. The response of the demagnetisation energy

to a change in φ is smallest around extrema, i.e. around φ = nπ (minima) and

φ = (n+ 1
2
)π (maxima). For intermediate values of φ, the energy change due to roughness

is insignificant in comparison to the dominating demagnetisation energy change.

This interpretation explains why the turning points of the positions of the domain

wall tend to coincide with constrictions in the roughness pattern: at the left-hand

turning points we have φ = nπ and at the right-hand turning points φ = (n+ 1
2
)π, so that
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the DW can couple to the edge distortions at these points in the motion. Figure 10 (a)

shows selected turning points of the oscillating domain wall position and illustrates how

these align with the effective constrictions in the roughness of the wire as indicated by

the vertical dashed black line.

The same argument suggests that dynamic pinning above the Walker breakdown

can only occur for φ ≈ nπ and φ ≈ (n+ 1
2
)π. In our simulations, we have only observed

dynamic pinning where φ ≈ nπ. An example for this dynamic pinning above the Walker

breakdown is shown in figure 10 (a) for d = 0.4 nm as a dotted line. The domain wall

shows oscillatory motion up to t ≈ 5 ns, and subsequently gets pinned at t ≈ 7 ns. The

corresponding dotted line in figure 10 (b) shows that φ = −3π, i.e. sin(φ) = 0, when

the domain wall reaches the pinning site. The requirement that φ must be close to nπ

or (n+ 1
2
)π for dynamic pinning to occur above the Walker breakdown explains why the

domain wall d = 0.4 nm in figure 10 (a) can pass through the pinning site x ≈ 260 nm

repeatedly without being pinned (three times for t < 5 ns).

Below the Walker breakdown, there is competition between the external field

that drives the domain wall forward and the effective potential that the domain wall

experiences due to the roughness. If the roughness exhibits a constriction, this reduces

the domain wall length and energy. The constriction can be interpreted as a pinning

potential well that the domain wall experiences if we use a model where the domain wall

is a particle that experiences a spatially varying potential energy. It depends on the

depth and width of this potential well whether the applied field can push the domain

wall through it or whether pinning takes place. An increasing external field reduces the

pinning strength. This is in line with our observations that pinning becomes less likely

for larger fields H below the critical Walker breakdown field.

We hypothesise that in addition to the length (in y-direction) of a constriction

in the roughness profile, it is also its width (in x-direction) which contributes to how

effective a constriction is as a dynamic pinning centre: presumably constrictions of width

comparable to the domain wall width are most effective, but the detailed shape of the

constriction is likely to be important, too.

The discussion above shows that in the steady and oscillatory regimes the pinning

process, although guided by the same underlying principles, leads to rather different

phenomena. For H < Hc the probability of the DW being pinned decreases with

increasing external field H since higher fields lead to a larger asymptotic value of φ,

whereas for H > Hc there is no simple relationship between the strength of the field

and the pinning probability since the latter depends on the intricate interaction of the

constantly precessing magnetisation and the edge distortions. Our simulation results

have shown that pinning above the Walker breakdown occurs in the whole range up

to the highest simulated fields (10 kA/m) and appears to be more common for higher

fields than for fields just above Hc. This seemingly counter-intuitive observation can

be explained by the fact that the oscillations of the DW position are much shorter for

large fields H than for small fields. For large fields, the domain wall position trajectory

overlaps with itself (see the quickly oscillating curves in figures 5 (a) and 10 (a)). Thus
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the DW passes the same location in the nanowire more often, with different angles.

This makes it more likely to reach a pinning site with φ = nπ or φ = (n+ 1
2
)π and thus

increases the pinning probability.

4.2. Influence of the roughness on the domain wall velocity

The domain wall trajectories in figure 10 (a) show that, although individual oscillation

cycles can be significantly altered at different roughness levels d, the changes mostly

average out over time. Thus the mean velocities are quite similar for all roughness

strengths. This is in line with the observation which we made earlier for H < Hc in

figure 9 (a), where the asymptotic velocities are also virtually identical for all trajectories.

In this section we study the influence of the roughness on the domain wall velocity in

more detail.

As discussed in section 2.4, there are two distinct ways of computing the velocity:

(i) the mean velocity, which uses the distance travelled during the simulated time based

on the first and last point of the trajectory; (ii) the asymptotic velocity, which attempts

to estimate the asymptotic velocity by disregarding the depinning process and, for fields

above the Walker breakdown, removes artefacts due to incomplete oscillation cycles at

the end of the simulation. We discuss both methods, putting our main emphasis on the

second one.

Figure 11 (a) shows plots of the asymptotic domain wall velocity (section 2.4.2) as a

function of the applied field for various roughness magnitudes d. Figure 11 (b) shows the

corresponding mean velocity (section 2.4.1). The correlation length of the roughness is

c = 6.0 nm for all data shown while the roughness amplitude varies between d = 0.0 nm

(smooth wire) and d = 0.09 nm in steps of 0.01 nm. The same randomisation seed was

used to produce the roughness profile in all cases so that increasing d does not change

the shape of the edge roughness but only increases the vertical size of the distortions.

For each value of d the external field was increased from 0 A/m up to 3000 A/m in steps

of 100 A/m and a simulation was run for each applied field value in order to compute

the DW velocities. In a second phase the external field interval containing the depinning

field was discretised in finer steps of 10 A/m to obtain a better resolution.

We define the depinning field Hdepin as the smallest field that is just strong enough

to drive the DW away from its original position into which the system has been relaxed

during the first stage of the simulation, irrespective of whether the DW gets pinned at

a later stage or not. The depinning field is a function of the correlation length c and

roughness magnitude d that define the edge roughness: Hdepin = Hdepin(c, d). For the

discussion of figure 11, c is kept fixed at 6 nm.

The line for d = 0 nm in figure 11 corresponds to a nanowire without roughness,

and there is no depinning field defined: any finite applied field will result in domain wall

motion. For increasing roughness magnitude we see that the domain wall remains pinned

in its original position (corresponding to zero velocity) up to the critical depinning field,

which increases with increasing d. Once the external field H exceeds Hdepin for a given
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(a)

(b)

Figure 11. (Color online) (a) Asymptotic domain wall velocity, computed using

the method described in section 2.4.2, as a function of applied field H . Each line

corresponds to one roughness magnitude d. (b) Corresponding mean domain wall

velocity, computed using method described in section 2.4.1.

roughness magnitude d, the DW starts moving.

For a couple of small values of d, such as d = 0.02 nm or 0.03 nm, the DW mean

velocity appears to increase ‘in leaps’ (figure 11 (b)), which is due to the DW being

pinned dynamically for small fields so that the mean velocity is reduced. This is not

visible in the asymptotic velocity (figure 11 (a)) where these data points have been

removed as in these cases the asymptotic velocity is not defined (see section 2.4.3).

However, for larger d such as d = 0.04− 0.09 nm the asymptotic velocity appears, on

the scale of this graph, to jump immediately from zero to the velocity of the smooth

system. For stronger applied fields up to the critical Walker field Hc ≈ 1.7 kA/m the

asymptotic DW velocities are virtually identical for all roughness strenghts. Above the

Walker breakdown there is some slight variation, but the discrepancies are small (≈ 10%

for the largest deviations, e.g. for H = 2.0 kA/m).

The plot of the domain wall mean velocities in figure 11 (b) shows that there is
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a somewhat gradual increase in the mean velocity once Hext exceeds Hdepin and that

up to the Walker field Hc the DW velocity in rough nanowires always stays below

the value of the smooth wire. The larger the roughness magnitude d, the further

does the mean velocity stay below the domain wall velocity of the smooth wire.

It appears as if larger roughness reduces the velocity, but the comparison with the

asymptotic velocities (figure 11 (a)) reveals that it is the initial depinning process that

gets increasingly slower with increasing roughness magnitude d (see section 4.1.1). As

the mean velocity is a time average of the domain wall velocity, this initial slowdown

is visible. We note that the reduction of the mean velocity due to the depinning will

decrease if the domain wall motion is simulated for longer periods of time. Unless we

want to study the effect of the depinning process on the mean velocity, we prefer the

asymptotic velocity as an observable because it is independent of the simulated time.

Above the critical Walker field, the mean velocity curves in figure 11 (b) exhibit a

seemingly erratic behaviour. Even the one for the smooth system (d = 0.0 nm) shows

a kind of undulation which the other curves more or less follow. To illustrate this more

clearly, the curve for the smooth system has been extended up to H = 3.5 kA/m. This

behaviour can be explained as follows. Since the DW motion is oscillatory, the end

point of the trajectory can vary significantly depending on where last oscillation is cut

off when the simulation exits. With the exit time of the simulation remaining constant

at 20 ns but the oscillations becoming shorter for increasing Hext, the cut-off point varies

significantly and also jumps backward and forward, leading to the undulating values of

the velocity within each curve in figure 11 (b). The two outliers for H = 2.2 kA/m

indicate that the DW was dynamically pinned for these two roughness levels, which

affects the mean velocity but is filtered out by our method to compute the asymptotic

velocity.

The observation that the asymptotic velocity in the presence of roughness coincides

with the domain wall velocity without roughness is in agreement with the data and

discussion in sections 4.1.1 and 4.1.2: Figures 9 (a) and 10 (a) illustrate that even though

there are perturbations in the trajectories – local decelerations below Hc and alterations

of the oscillations above Hc – the asymptotic velocities are effectively the same as in the

smooth nanowire even for higher roughness amplitudes.

Figure 11 shows that the critical Walker breakdown field is the same for all

roughness strengths, which was observed in all other performed simulation runs as well.

This is in contrast to a similar study of in-plane domain walls (Min et al. 2010), where

an increase of the critical field (combined with a slightly decreased peak DW velocity)

was observed for higher roughness magnitudes.

We have discussed two different ways to analyze data from the time dependent

simulations to compute (i) the mean velocity, and (ii) the asymptotic velocity.

Depending on the experimental context, either entity may be of interest: for domain

wall motion in very short nanowires, inclusion of the depinning time as in the mean

velocity calculation may be desired. If the simulation is meant to simulate a system

where the depinning time is irrelevant (because the wire is very long) but matters in
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Figure 12. (Color online) Depinning field Hdepin as a function of the roughness

amplitude d, for different correlation lengths c.

the simulation (because the simulated wire is not so long), then the asymptotic velocity

may be a better measure.

4.3. Influence of the roughness on the depinning field

In the study of figure 11, where the roughness correlation length is c = 6 nm, we

have noted that the depinning field Hdepin(c, d) increases as a function of roughness

magnitude d. In this section, we analyse this dependence quantitatively for varying

correlation lengths c. The corresponding simulation results are gathered in figure 12.

Each of the curves displays the dependence of the depinning field Hdepin on the roughness

magnitude d for a fixed roughness correlation length c. The data shows that the

depinning field has an approximately linear dependence on the roughness magnitude d

for all values of c. We denote the constant of proportionality in this linear relationship

by βc, so that Hdepin(c, d) = βc · d. Thus βc is a measure of the effective pinning strength

of the edge roughness for a given roughness correlation length c, and given by the slope

of the lines in figure 12. We use a least-squares fit to determine the value of βc for each

line, omitting the data points for 0.01 ≤ d ≤ 0.09 to avoid a bias.

Figure 13 shows how βc varies as a function of c. The data points marked with a

cross and connected by a solid line show the slopes of the ten lines that are plotted in
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Figure 13. Proportionality constants βc describing the dependence of the depinning

field on the roughness level d for each correlation length c. The solid line corresponds

to figure 12; the dashed line represents values averaged over four runs with different

roughness shapes.

figure 12. The dashed line shows corresponding results that have been averaged over

four different sets of simulation runs (i.e. using four different random seeds for the

domain wall roughness functions, and then repeating all simulations required to obtain

the βc’s). Both curves show low values for small and large c and a maximum between

at c = 7 nm (solid line) and c = 9 nm.

The largest influence of the roughness on the DW motion is expected if the

characteristic length scale of the edge distortions is of the same order as the domain

wall width: for very small correlation lengths c the roughness is at a scale too small

to be noticed by the DW, whereas for very large values of c the wire edge appears

locally flat to the DW. The characteristic domain wall width is taken as π
√

A/K1

(Lilley 1950, Kronmüller & Fähnle 2003), which is 18.4 nm for our material parameters.

The effective roughness length scale for a given parameter c is on the order of 2.76 c as

shown in section 2.3. Matching of the effective roughness length scale with the domain

wall width should thus occur where c = π
√

A/K1/2.76 ≈ 6.7 nm. This is compatible

with the data shown in figure 13 where the most effective pinning is found for c in the

range 7 nm to 9 nm.

Finally, focusing on the range of values which βc takes for different roughness

correlation lengths c, we note that by matching the effective roughness length scale with

the domain wall width, the pinning effect can be increased significantly (approximately

a factor of 5 for the data shown here).
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5. Summary

We study the dynamics of field-driven domain walls in perpendicular magnetic

anisotropy (PMA) nanowires with added edge roughness. We use a finite-element based

roughness model which allows systematic exploration of the roughness configuration

space using two parameters: (i) the roughness length scale c and (ii) the roughness

magnitude d (section 2.3).

The dynamics of a domain wall moving in a smooth nanowire is studied in order to

have a reference point for the rough systems. The typical Walker breakdown is observed,

with the domain wall showing steady motion below the critical Walker field Hc and

oscillatory motion above Hc. In the smooth system the DW dynamics can be understood

in terms of the precession of the magnetisation angle φ inside the domain wall.

In the nanowire with edge roughness, the Walker breakdown is observed at the same

critical applied field Hc as in the smooth system. Whereas in the smooth system the

DW moves for any non-zero applied field, with added edge roughness the domain wall

remains pinned up to a critical depinning field Hdepin which increases with increasing

roughness magnitude d. For fields H > Hdepin the roughness affects the DW trajectories.

In the steady-state regime below the Walker breakdown the roughness leads to a

significantly prolonged initial depinning process and introduces local decelerations in

the DW motion, resulting in sporadic distortions of the trajectory which otherwise

remains largely unchanged (figure 9 (a)). In the oscillatory regime the individual DW

cycles can be markedly altered in size and shape (figure 10 (a)).

The presence of edge distortions can also lead to dynamic pinning during the DW

motion. This is a process which is stochastic in nature. We find that dynamic pinning

above the walker breakdown is only likely to happen when the magnetisation angle φ

is aligned with, or perpendicular to, the long wire-axis, as these are the points in the

trajectory where the domain wall couples most strongly to the roughness distortions.

We study the influence of the roughness on the domain wall velocity, and compute

two different observables: the mean velocity and the asymptotic velocity. The results

have shown that the mean velocity of the domain wall during the simulation can be

significantly lower than in the smooth system (figure 11 (b)). This slowdown occurs

for fields slightly above the depinning field and is the result of the prolonged initial

depinning process in the presence of rough edges (figure 9 (a)). However, the asymptotic

DW velocity, which ignores the initial depinning, is essentially unaltered by the presence

of roughness (figure 11 (a)), in spite of the noticeable influence of the roughness on the

DW trajectories. In contrast to the mean velocity observable, the data obtained for the

asymptotic velocity does not depend on the length of the simulated time.

Finally, we study the dependence of the depinning field on the roughness parameters

in our model. We find that Hdepin increases approximately linearly with the roughness

amplitude d, which controls the vertical size of the edge distortions. We show that the

effectiveness of pinning increases considerably if the width of the roughness peaks and

troughs correlates with the domain wall width.
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