Parametric measures of variation around the sample mean

For a dataset of \(N \) observations sampled at random from a normally distributed population of interest, the sample mean is the average value per observation given by the sum of the data divided by \(N \). Always accompany the sample mean with a description of the sample variation (v or SD) or an inference about the population based on the sample variation (SE or CI).

The sample variance \((v)\) is a measure of the spread of data around the sample mean, given by the mean square deviation of the data (the average squared deviation from the mean per degree of freedom\(^1\)). In an Analysis of Variance on two or more samples, the variance equals the MS[Error], which is used to calibrate MS[Test] in calculating the statistic \(F \).

The sample standard deviation (SD) equals the square root of \(v \). About 68\% of normally distributed data lies within 1 SD either side of the mean, and 95\% of values lie within 1.96 SD of the mean. Sample means are often described with their SD, or plotted ± 1SD.

The sample standard deviation (SD) equals the square root of \(v \). About 68\% of normally distributed data lies within 1 SD either side of the mean, and 95\% of values lie within 1.96 SD of the mean. Sample means are often described with their SD, or plotted ± 1SD.

The standard error of the mean (SE) is the SD of sample means around the population mean, and so a measure of the variability amongst the means of samples taken from the same population. It equals the square root of the contribution per observation to the sample variance: \(\sqrt{v/N} \) = SD/\(\sqrt{N} \). An analysis of variance is often illustrated by means ± 1SE.

The confidence interval (CI) hosts the range of plausible values of the population mean \(\mu \) for a population that yields the sample mean and variance. A smaller CI indicates more precision in estimating \(\mu \). The Central Limit Theorem dictates that the CI applies even to non-normally distributed populations, given a large enough sample from the population.

The plot below shows a sample mean and 95% CI. Suppose the sample comprises \(N = 24 \) chicks from a population of interest, and the response \(y \) is their change in body mass (g) over the first 12 hours since hatching. The sample mean = 2.60 g shows that these chicks gained weight on average. The CI reveals, however, that a population with normally distributed growth around a mean of \(\mu = 0 \) would yield sample means at least as deviant as the observed one in more than 5\% of samples comprising 24 randomly selected chicks. Likewise, a population with \(\mu = 5 \) g would yield sample means at least as deviant in > 5\% of samples. The CI encompasses the range of plausible values of \(\mu \) given only the sample data and the assumption of normality. Thus we fail to reject a null hypothesis \(H_0 = 0 \) or 5 or anywhere within the CI. In this scenario, we cannot be confident that the conditions experienced by the sample will favour chick growth in the population.

![Confidence Interval Example](image)

Fig. 1. Sample from a population with unknown \(\mu \).

\(^1\) For a sample of \(N \) data points, the variance has degrees of freedom \(= N - 1 \). This is because by definition of the sample mean \(\bar{y} \), the sum \(\sum_i (y_i - \bar{y}) = 0 \); thus if we know \(N - 1 \) of the deviations, we can calculate the last one, meaning that there are only \(N - 1 \) freely varying deviations.
Formulae for parametric measures of variation

Sample mean: \(\bar{y} = \frac{\sum_{i=1}^{N} y_i}{N} \)

Sample variance: \(v = \frac{\sum_{i=1}^{N} (y_i - \bar{y})^2}{N-1} \)

Standard deviation: \(SD = \sqrt{v} \)

Standard error of the mean: \(SE = \frac{SD}{\sqrt{N}} \)

Confidence interval: \(CI = \bar{y} \pm t_{\alpha\frac{N}{2}} \cdot SE \)

One-sample test of \(H_0 = \mu \): Student’s \(t = (\bar{y} - \mu)/SE \)

The confidence interval, CI, for a threshold Type-I error \(\alpha \), lies either side of the sample mean between limits \(\bar{y} \pm t_{\alpha\frac{N}{2}} \cdot SE \), where the quantile \(t_{\alpha\frac{N}{2}} \) is the critical value of the Student’s \(t \) distribution at two-tailed \(\alpha \) for \(N-1 \) degrees of freedom [given by the R command: \(qt(1-\alpha/2, N-1) \)]. For a very large sample, the 95% CI are well approximated by 1.96×SE. For the Fig.-1 data, \(\bar{y} = 2.60 \, g \), \(SE = 1.477 \), \(N = 24 \), and \(t_{0.05} = 2.069 \); so the 95% CI = 2.60 ± 3.05 g.

The one-sample Student’s \(t \) statistic tests the compatibility of the data with a refutable null hypothesis: \(H_0 = \mu \). The data give \(t = (\bar{y} - \mu)/SE \), with \(N-1 \) degrees of freedom. The probability, \(P \), of Type-I error (rejecting a true null hypothesis) can be found by evaluating \(t \) against its \(\alpha \)-quantile, \(t_{\alpha\frac{N}{2}} \) for a two-tailed test (obtained either with the R command given above, or from a table of \(\alpha \)-quantiles of the Student’s \(t \) distribution). If \(t \) exceeds the critical value, then \(P < \alpha \) and we reject \(H_0 \). Alternatively, \(P \) is obtained directly with the R command: \(2 \times (1 - pt(abs(t), N-1)) \). For example, an analysis of the Fig.-1 data fails to refute the null hypothesis of zero growth (\(t_3 = 1.76, P = 0.09 \)). The value of \(P \) is the probability of data at least as deviant given the null hypothesis, and thus the probability of making a mistake by rejecting a true \(H_0 \). In other words, a normally distributed population with mean \(\mu = 0 \, g \) has 9% probability of yielding a sample mean at least as deviant as the observed \(\bar{y} = 2.60 \, g \). At > 5%, this is too high a probability for us to reject the possibility of zero growth in the population. The result accords perfectly with the inference we drew from the 95% CI (page 1 above and Fig. 1).
R commands for plotting Fig. 1

```r
# Plot of a single sample mean with 95% CI.

library(gplots) # *** requires installation of package 'gplots' ***

mu <- 0 # the null hypothesis for the value of the population mean
alpha <- 0.05 # critical threshold for Type-I error

y <- c(-3.4076, -8.5488, -1.8395, -5.6626, -2.8127, -4.6241, -1.6908, -4.7169, -0.6191, 1.2085, 5.1147, 7.2654, 4.4188, 6.3951, 0.5986, -4.5985, 13.322, 17.0426, 14.66, 16.1283, 8.5927, 2.2129, 1.8934, 2.0203) # the data

N <- length(y) ; DF <- N - 1
x <- c(rep("1", N)) # single sample x = 1
SE <- sqrt(var(y)/N) # SE = sqrt(v/N)
Cl <- SE*qt(1-alpha/2, DF) # confidence limits either side of mean

par(cex = setcex) # set the font size for labels

# Add reference line, axis labels, and legend

windowsFonts( A = windowsFont("Times"),
            B = windowsFont("Arial"),
            C = windowsFont("Cambria"))

abline(h = mu, lty = 3) # reference line for null hypothesis

if (mu > (mean(y)+qt(1-alpha/2,DF))*0.9) {ps = 1} else {ps = 3} # text below/above Line

text(1.3, mu, substitute(paste(italic("H"), "[0], "~italic("\u03bc")~", v), list(v=mu)),
     pos=ps, cex=setcex/2, family = "A")

mtext("x", font = 3, side = 1, line = 0.5,
      las = 1, cex = setcex, family = "A")

mtext(substitute(paste("Response mean and ",v,"% CI"), list(v=100*(1-alpha))),
      side = 2, line = 2.5, las = 0, cex = setcex, family = "B")

mtext(expression(" ~italic("y")~"),
      side = 2, line = 2.5, las = 0, cex = setcex, family = "A")

mtext(expression(~ bold("Fig. 1."~~ Sample from a population with unknown"~italic("\u03bc\. "))),
      side = 1, line = 1.5, cex = setcex, family = "C")

# Report statistics

writeLines(sprintf("Sample mean = %.2f g.",mean(y))) # mean (with trailing zero)

## Sample mean = 2.60 g.

t <- (mean(y)-mu)/SE ; P <- 2*(1-pt(abs(t),DF)) # Student's t test
tcrit <- qt(1-alpha/2, DF) # critical t at alpha for a two-tailed test

if (abs(t) > tcrit) {result <- "Reject"} else {result <- "Fail to reject"}
writeLines(c(result, " \ H0: mu = \), mu, sprintf(" (t = %.3f, \),t),
    sprintf("DF = %.3f, \),DF),
    sprintf("P = %.3f; \),P),
    sprintf("[t[alpha=\%.2f \],alpha),
    sprintf(" = %.3f).",tcrit)

## Fail to reject H0: mu = 0 (t = 1.762, DF = 23, P = 0.091; t[alpha=0.05] = 2.069).

# rm(list = ls())

par(par(no.readonly = TRUE))
```