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1. We normally think of the one-dimensional well as being horizontal. Suppose it
is vertical; then the potential energy of the particle depends on x because of the
presence of the gravitational field. Calculate the first order correction to the zero-
point energy, and evaluate it for an electron in a box on the surface of the Earth.
Account for the result. Hint : The energy of the particle depends on its height as
mgx where g = 9.81ms−2. Because g is so small, the energy correction is tiny; but
it would be significant if the box were on the surface of a neutron star.

2. Calculate the second order correction to the energy for the system described in
the previous problem and calculate the first order ground state wavefunction.
Account for the shape of the distortion caused by the perturbation. Hint : You
will encounter the integral

∫
x sin ax sin bx dx = − d

da

∫
cos ax sin bx dx

∫
cos ax sin bx dx =

cos(a− b)x

2(a− b)
− cos(a + b)x

2(a + b)
.

Evaluate the sum over n numerically.

3. Repeat the previous problem, but estimate the second order energy correction
using the closure approximation. Compare the two calculations and deduce the
appropriate value of ∆E.

4. Following an approach similar to that employed to obtain the expression for |n(1)〉
in non-degenerate time-independent perturbation theory, derive the following ex-
pression for the second order correction to the wavefunction (assume that the
expression for |n(1)〉 is known):
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∑
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5. Assume that Ĥ(0) is the Hamiltonian of a one-dimensional harmonic oscillator
centred at x = 0 and that there is a perturbation Ĥ(1) = γx̂ where γ is a real
constant. Calculate the first and second order corrections to the energy. Then, by
observing that actually Ĥ = Ĥ(0) + Ĥ(1) also happens to be the Hamiltonian of
a slightly modified (say how) harmonic oscillator, show that the energy you have
calculated up to the second order is exact for Ĥ.
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6. In time-independent degenerate perturbation theory assume that we can find a
Hermitian operator Â which commutes with both Ĥ(0) and Ĥ(1). Also assume
that the Â eigenvalues of the common eigenfunctions of Ĥ(0) and Â are all different
from each other. Show that these common eigenfunctions are the “correct” ones
for the perturbation Ĥ(1).

7. Use the formalism of perturbation theory for a time-dependent perturbation and
the expression for the first order expansion coefficient for the time-dependent wave-
function, a

(1)
f (t) = 1

ih̄

∫ t

0
H

(1)
fj (t′)eiωfjt′dt′ to derive the second order expansion co-

efficient:

a
(2)
f (t) =

(
1

ih̄

)2 ∑

k

∫ t

0

dt′
∫ t′

0

dt′′eiωfkt′H
(1)
fk (t′)eiωkjt′′H

(1)
kj (t′′) .

8. Calculate the probability of finding a system in the state |f (0)〉 if initially it was
in the state |j(0)〉 and a constant perturbation was applied at t = 0.

9. A hydrogen atom in a 2s1 configuration passes into a region where it experiences
an electric field in the z-direction for a time τ . What is its electric dipole moment
during its exposure and after it emerges? [The dipole moment is the expectation
value of eẑ. The integral

∫
ψ2sẑψ2pzdr is equal to 3a0.]

10. An electric field, E , in the z-direction is increased linearly with time, starting from
zero. What is the probability that a hydrogen atom, initially in the ground state,
will be found with its electron in a 2pz orbital at time t?

11. At t = T/2 the strength of the field used in the previous problem begins to decrease
linearly. What is the probability that the electron is in the 2pz orbital at t = T?
What would the probability be if initially the electron was in a 2s orbital?

12. Assume in the previous problem that the perturbation instead of being switched
linearly it was switched on and off exponentially and slowly, the switching off
commencing long after the switching on was complete. Calculate the probabili-
ties, long after the perturbation has been extinguished, of the 2pz orbital being
occupied, the initial state being the 1s. Hint: Take Ĥ(1) ∝ (1−e−kt) for 0 ≤ t ≤ T
and Ĥ(1) ∝ e−k(t−T ) for t ≥ T . Interpret “slow” as k ¿ ω and “long after” as
k(t− T ) À 1 (for “long after switching off”).

13. Examine how the A and B coefficients depend on the length of a one-dimensional
square well for the transition n + 1 → n. Hint: You will need the integral:
∫

x sin ax sin bx dx =
x sin(a− b)x

2(a− b)
− x sin(a + b)x

2(a + b)
+

cos(a− b)x

2(a− b)2
− cos(a + b)x

2(a + b)2
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14. Model an atom by an electron in a one-dimensional box of length L. (Assume
there to be an “invisible” positive charge at the centre of the box which provides
the positive end of the dipole but does not affect the wavefunctions.) Calculate
the polarizability of the system parallel to its length. Hint: The procedure and
results of Problem 2 can be used.

15. Establish a perturbation theory expression for the components of the first hy-
perpolarizability βzzz of a non-polar molecule. Hint: You will need to use the
following expression for the third order correction to the energy
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16. Use the closure approximation to estimate the polarizability of a hydrogen atom in
its ground state. Hint: The main work of the calculation is the evaluation of 〈r2〉;
use the following expressions for the ground state wavefunction and the energy
levels of the atom

ψ1s(r) =

(
Z3

πa3
0

) 1
2

e−Zr/a0 , En = −Z2µe4

2h̄2n2

and take the average energy difference for the closure approximation to be equal
to the ionization energy of the hydrogen atom from its ground state.

17. Consider two particles, each in a one-dimensional box, with the centres of the
boxes separated by a distance R. Each system may be regarded as a model of an
atom in the same sense as in Problem 14. Calculate the dispersion energy (using
the full second order energy expression and not the closure approximation) when
the boxes are (a) in line, (b) broadside on. Hint: Note that the dipole moment
operators have only one component in a one-dimensional system and that much
of the calculational work has been done in Problem 14.

18. Use Møller-Plesset perturbation theory to obtain an expression for the ground
state wavefunction corrected to first order in the perturbation.


