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Recently developed density functionals have good accuracy for both thermochemistry (TC) and
non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the
basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme
is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are opti-
mized on each atomic site by minimizing a surrogate function. High accuracy is obtained by
applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches.
Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target
basis set produces <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets,
and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near
the basis set limit can be even better reproduced. With further improvement to its implementa-
tion, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations
as a method to approach the basis set limit of modern density functionals. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4959125]

I. INTRODUCTION

Kohn-Sham density functional theory1–3 (KS-DFT) has
become the most widespread electronic-structure method
because of its reasonable balance between accuracy and
computational cost. Functionals using the generalized gradient
approximation (GGA)4,5 are usually regarded as the simplest
that can give acceptable accuracy for chemistry. To overcome
the plague of self-interaction error, new variables have been
introduced, leading to meta-GGA,6–8 global hybrid (GH),9

and range-separated hybrid (RSH)10,11 functionals. At the
same time, a variety of models have been developed to
account for van der Waals (vdW) interactions within DFT,12,13

including the empirical DFT-D methods14–16 and nonlocal
correlation (NLC) functionals (e.g., vdw-DF-10,17 VV1018).
Most recently, two combinatorially designed functionals were
developed: ωB97X-V19 (RSH+VV10) and B97M-V20 (meta-
GGA+VV10), which demonstrated impressive accuracy on
both thermochemistry (TC) and non-covalent interactions
(NC), with an accessible complete basis set (CBS) limit,
and low grid sensitivity.

With finite atomic orbital (AO) basis sets,21 one
prerequisite for attaining such accuracy is to approach the
CBS limit. This issue has been carefully investigated,22–25 but

a)Electronic mail: mhg@cchem.berkeley.edu

is often neglected in practical applications, as exemplified by
the prevalence of the “B3LYP/6-31G(d)” model chemistry. A
basis set of at least triple-ζ and preferably quadruple-ζ quality
is often required by hybrid functionals (e.g., B3LYP9,26,27)
to obtain adequately converged thermochemistry results.
Even for the semi-local B97M-V functional, the acceptable
alternatives to aug-cc-pVQZ (aQZ)28,29 (which almost rep-
resents the CBS limit) are still of least triple-ζ quality. Turning
to the evaluation of NCs, a similar study on the A2430 and
S6631,32 complexes indicates that augmented triple-ζ basis
sets (e.g., aug-cc-pVTZ (aTZ), def2-TZVPD33) are in general
required by B97M-V to properly converge the binding ener-
gies. Their double-ζ counterparts (e.g., aug-cc-pVDZ (aDZ),
def2-SVPD) should only be carefully used with counterpoise
(CP) corrections.34 For ωB97X-V, the requirement on basis
set qualities might be even higher due to the slower basis set
convergence of functionals that contain exact exchange.

Figure 1 demonstrates the basis set convergence of several
modern density functionals in terms of their root-mean-square
deviations (RMSDs) for the G2 set35 (atomization energies
of 148 neutral molecules, whose reference values are taken
from Ref. 36). Apart from B97M-V, using aQZ instead of
aTZ for the other four functionals reduces their RMSDs by
0.8–1.4 kcal/mol, including the semi-local B97-D15 functional
(GGA). Using aDZ yields very poor accuracy (usually over
10 kcal/mol RMSDs) for all these functionals, which defeats

0021-9606/2016/145(4)/044109/17/$30.00 145, 044109-1 Published by AIP Publishing.
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FIG. 1. Basis set dependence of the root-mean-square (RMS) errors for
G2 atomization energies against the reference values from Ref. 36. Data
for five functionals are collected: B97-D (GGA), B97M-V (meta-GGA),
B3LYP (GH), M06-2X (GH),39 and ωB97X-V (RSH). Dunning’s augmented
correlation-consistent basis sets (D, T, Q) are used to systematically approach
the CBS limit.

the purpose of using state-of-the-art density functionals. One
way to tackle this problem is by directly training a functional
in a small basis, such as the EDF1 functional,37 which
was parameterized at the 6-31+G(d) level. By relying on
cancellation between functional error and basis set error, the
transferability of these methods are often limited, and further
empirical corrections seem necessary to achieve adequate
accuracy for relative energies.38

Each self-consistent field (SCF) cycle of a KS-DFT
calculation involves two computationally demanding steps:
(1) Fock matrix construction with a given density and
(2) Fock matrix diagonalization to update the density. For fixed
system size, the computational cost of the Fock build scales as
O(n4) with respect to the basis size (n) when conventional AO
algorithms are used, and the cost of the diagonalization step
scales as O(n3). This steep cost increase inhibits large basis
sets (e.g., those of quadruple-ζ size) from being routinely
employed in DFT calculations. It should be noted that
the scaling of cost vs. basis size is largely independent
of the development of linear scaling (with system size)
Fock matrix build algorithms40–47 and many diagonalization
replacements.48,49 Moreover, near-complete basis sets are
not favored by linear-scaling algorithms, especially when
diffuse functions are included, since matrix element sparsity is
diminished and the overlap matrix starts to be ill-conditioned
(note that optimization of Gaussian basis sets up to triple-
ζ quality with much reduced condition numbers while
maintaining condensed phase accuracy has been reported50),
which in turn destroys the sparsity of the density matrix.51,52

One successful strategy to make large basis KS-DFT
calculations more tractable is to compute the full Coulomb (J)
and exchange (K) matrices more efficiently by approximating
two-electron repulsion integrals (ERIs) with the aid of
auxiliary basis functions or grid points. The resolution-of-the-
identity (RI) method53–55 expands the product of AO function
pairs with a preoptimized auxiliary basis. RI algorithms do
not improve the system-size scaling unless local fit regions

are applied,56,57 but they reduce the basis set size scaling
from O(n4) to O(n3). Therefore, state-of-the-art RI algorithms
(e.g., MARI-J,58 PARI-K,59 and occ-RI-K60) can speed up
Fock matrix constructions in large basis sets significantly for
small- to medium-sized systems, while retaining numerical
accuracy. The diagonalization step is unaffected.

A second successful approach to accelerating large basis
calculations is to perform the iterative SCF procedures in a
primary (small) basis and then approximate the secondary
(target) basis results by utilizing perturbation theory. This
idea was introduced for post-SCF methods (e.g., MP2),61,62

and was then developed for SCF methods, including the
dual-basis SCF (DB-SCF) method developed by Head-
Gordon and co-workers,63–67 and the “Hartree-Fock/Density
Functional Perturbation Corrections” (HFPC/DFPC) scheme
proposed by Deng and Gill.68–70 With a careful choice
of primary/secondary basis set pairing, these methods can
provide satisfactory accuracy for both TC63,69,70 and NC67 with
significantly reduced computational costs (roughly 10 times
faster), although system-size scaling remains unchanged.
One limitation is the need to develop and validate the
basis set pairings,67 which determines accuracy and speedup.
Furthermore, as the secondary basis approaches the CBS
limit, the size of the primary basis needed to achieve a given
accuracy also increases: for instance the optimized primary
basis for cc-pVQZ is roughly of cc-pVTZ size.64

A related approach is the use of small adaptive basis sets.
The idea of encoding chemical environment information into
atomic/quasiatomic basis functions to understand chemical
bonding dates back to early tools,71–76 as well as some
more contemporary methods.77–82 Apart from interpretive
purposes, the merits of utilizing small adaptive bases in KS-
DFT calculations have been recognized with the development
of fast (especially linear-scaling) SCF algorithms, leading
to renewed interest in the concept of “polarized atomic
orbitals” (PAOs), first put forward by Adams in the 1960s.83,84

These adaptive sets usually have very tiny (often minimal)
spans, which leads to vastly fewer variational degrees of
freedom. In addition, an adaptive basis constructed with spatial
confinement contributes to a well-conditioned overlap matrix,
which is a property favored by O(N) scaling methods.

The Adams PAO scheme treats atoms in a molecule as
fragments and solves projected equations self-consistently on
each of them, which is similar, in spirit, to projected SCF
methods using fragment-localized, non-orthogonal molecular
orbitals (MOs) to evaluate intermolecular interactions (SCF-
MI).85–87 In practice this scheme only works for weakly
interacting atoms (e.g., rare-gas clusters) or ionic compounds
(e.g., LiH, NaCl).88 Later, the PAO approach was recast to form
a minimal atom-centered adaptive basis as an atom-blocked
contraction of the secondary basis functions on each atom.89

The molecular energy is minimized simultaneously with
respect to the atom-blocked contraction coefficients and the
density matrix in the adaptive basis.89 The PAO-SCF energy
can be improved using perturbation theory,90 similar to the dual
basis approaches discussed above. The minimal rank of the
PAO basis and its atomic locality makes it promising for linear-
scaling algorithms,52 but the “double” optimization problem
is challenging and often causes convergence problems.
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Significant progress on tractable adaptive basis schemes
for KS-DFT has been made in the condensed matter physics
community. Similar to the aforementioned PAO approach,
Ozaki and Kino91,92 and others93,94 used numerical solutions
to the atomic Kohn-Sham equations as the secondary basis,
and a scheme resembling geometry optimization to obtain
the adaptive basis. The CONQUEST program95 forms local
“support functions” (an adaptive basis) from either functions
akin to plane waves96 or pseudo-atomic orbitals.97 The
ONETEP package98,99 forms non-orthogonal generalized
Wannier functions (NGWFs)100 as the environment-adapted
basis, which is a linear combination of periodic sinc
functions confined in an atom-centered sphere of fixed radius.
The NGWFs are efficiently optimized via a preconditioned
conjugate-gradient algorithm.101

Recently, adaptive basis schemes that do not require the
global Hamiltonian or density matrix have been presented.
The localized filter diagonalization (LFD) method builds an
adaptive basis on-the-fly by contracting the atomic Gaussian
functions within a local region, with contraction coefficients
determined by diagonalizing a block of the Hamiltonian matrix
corresponding to that region.102,103 This algorithm has also
been used to construct multisite local support functions,104

and the general philosophy has been extended by Lin et al.,105

including another model with more rigorous optimization.106

While clearly promising, to our knowledge, the accuracy and
performance of these methods on chemical systems have not
been systematically assessed yet.

In the present work, we propose an inexpensive version
of the PAO method (Sec. II). Instead of energy-optimizing the
adaptive basis and density simultaneously, an inexpensive

FIG. 2. Illustration of the overall MAB-SCF (PC) procedure, which includes
four steps in total.

converged SCF solution (density matrix) computed in a
projected reference basis (PRB) is utilized as a reference
(Sec. II A). Based on this reference, an atom-centered minimal
adaptive basis (MAB) is found by minimizing a judiciously
chosen surrogate function (Sec. II B), which only involves
computationally inexpensive steps. The converged MAB is
then used as the basis set for another SCF calculation,
which requires small computational effort as well while
providing comparable accuracy to PAO-SCF. Perturbation
corrections (PCs) can be applied to the MAB-SCF energy
for obtaining the desired accuracy (Sec. II E). The overall
MAB-SCF (PC) procedure is illustrated in Figure 2. Details
about the pilot implementation of this scheme and proof-
of-concept calculations are summarized in Sec. III. As an
approximate SCF method, its accuracy is assessed on a
broad range of TC and NC datasets that is presented in
Secs. IV and V.

II. THEORY

The notation used throughout this paper is as follows:
|ω⟩: generic atomic basis functions; |ψ⟩: generic molecular
orbitals; capital Roman indices X , Y , . . . : atomic centers;
lowercase Greek letters µ, ν, λ, . . . : secondary (large) AO
basis indices; α, β, γ, . . . : primary (PRB or MAB) AO
basis indices; lowercase Romans i, j, k, . . . : occupied MO
indices; a, b, c, . . . : virtual MO indices; p, q, r , . . . : generic
MO indices. For introducing the MAB optimization scheme,
i, j, . . . are also employed to denote the vectors retained
in the MAB subspace, a, b, . . . for the vectors in MAB’s
complementary subspace, and p, q, . . . for the generic ones,
which is analogous to the partitioning of MO space in SCF.
The different basis sets that are involved in this work and the
relationships between them are summarized in Table I.

Unless otherwise specified, matrices in the secondary AO
basis are denoted by bold Roman letters (e.g., F, P), while
those in the primary basis are by bold calligraphic Roman let-
ters (e.g.,F ,P). To concisely show the character of quantities
within a nonorthogonal basis, tensorial notation will be used
in the derivation, i.e., covariant (subscript) and contravariant
(superscript) indices are distinguished, following Ref. 107 and
the appendix of Ref. 89. For instance, a matrix element denoted
by BXµ

Xα indicates that matrix B has rows corresponding
to contravariant secondary basis functions and columns
corresponding to covariant primary basis functions, and these
basis functions belong to the same atomic center X . Einstein
summation convention is applied for contractions between
contravariant and covariant indices, except for summations
over different atomic centers, which will be written out
explicitly.

A. SCF in the projected reference basis (PRB)

The search for the MAB described in Sec. II B requires
an inexpensively calculated reference density matrix in the
secondary (target) basis. A converged SCF solution in a small
PRB serves this purpose. The PRB is constructed by projecting
the reference basis functions, {|ωAα̃⟩}, into the space spanned
by the secondary basis on each atom:66
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TABLE I. Summary of different level of atomic basis sets involved in the procedure of MAB-SCF.

Name Expression Definition (origin)

Standard basis

Reference basis |ωAα̃⟩ Standard double-ζ basis sets
(RB) (e.g., 6-31+G(d))
Secondary basis |ωAµ⟩ Standard basis sets that are close
(the target) to the CBS limit (e.g., aQZ)

Primary basis

Projected reference |ωAα⟩= |ωAµ⟩(Bref )Aµ
Aα

On-atom projection of RB
basis (PRB) (Eq. (1)) into the secondary basis
Minimal adaptive |ωAi⟩= |ωAµ⟩BAµ

Ai
, Energetically optimized contraction of

basis (MAB) B= argminE(B)a secondary basis functions on each atom

aE(B) is the surrogate energetic objective function used for MAB optimization (defined by Eq. (10)).

|ωAα⟩ = |ωAµ⟩ �S−1
A

�AµAν (S12)AνAα
= |ωAµ⟩ (Bref )Aµ

Aα. (1)

Here, (S12)AνAα = ⟨ωAν |ωAα̃⟩ is the overlap between the
(unprojected) reference basis and the secondary basis
functions, while SA is the overlap metric of secondary
basis functions on atom A. Throughout this paper, B is
used to denote atom-blocked matrices containing contraction
coefficients of the secondary basis functions on each atomic
site, which defines a primary basis.

Since the reference basis is small (to be specified later)
while the secondary basis is close to the CBS limit, the block
in Bref will be very sparse since the contraction coefficients
for the high angular momentum components of the secondary
basis all vanish during the projection procedure. At this stage,
an SCF calculation is performed in the PRB, by solving the
following generalized eigenvalue equation:

FC = SCϵ , (2)

where F and S have the dimension of the PRB, and they can
be transformed from their counterparts in the secondary basis
using the Bref matrix,

F = BT
refFBref , S = BT

refSBref . (3)

In reverse, the PRB density matrix, P, can be projected
into the secondary basis via the following transformation:

Pref = BrefPBT
ref . (4)

Since the PRB is an exact subset of the secondary basis,
no information in P is lost upon projection into the latter
(Eq. (4)), i.e., Pref and P contain the same information about
the chemical environment (this is not true ifP is optimized in
the reference basis directly without doing the projection). We
call this special property of Pref “PRB-representability.” The
final PRB density matrix P therefore becomes the reference
used in the search for the MAB.

B. Finding the minimal adaptive basis (MAB)

Sec. II A employs a basis defined by a fixed atom-blocked
transformation (the PRB) and converges a density matrix in
it. With the fixed Pref in hand, our goal now is to optimize
an energy-like function with respect to a variable B matrix
that defines the MAB. (Note: In the following discussion
B exclusively denotes the MAB coefficients.) Since a single

diagonalization minimizes Tr[PF] for a chosen number of
electrons64 when F is given, we shall, by analogy, minimize
Tr[P̃F], where P̃ is a “MAB-representable” density matrix in
the secondary basis,

P̃ = BDBT . (5)

D is a density matrix in the MAB that derives from the fixed
Pref .

However, the MAB has smaller rank than the PRB, and
the spaces spanned by them are rather different, so Pref will
not be exactly representable by the MAB. There exist many
possible ways to construct P̃. We choose to project Pref into
the space spanned by the MAB first, which gives D, then
transform it back into the secondary basis,

D = (σ−1)BTSPrefSB(σ−1), (6)

P̃ = B(σ−1)BTSPrefSB(σ−1)BT , (7)

where σ refers to the overlap metric of the MAB,

σ = BTSB. (8)

Recognizing that the projector into the MAB space is

R = B(σ−1)BT , (9)

our surrogate energetic objective function becomes

E = Tr
�
RSPrefSRF

�
. (10)

For brevity, in the following derivation we use P instead of
Pref for the fixed reference density matrix.

We note that the MAB-representable density matrix P̃
usually does not contain exactly the right electron count. While
the exact Nelec is given by Tr[PS], utilizing the idempotency
of R (based on Eqs. (8) and (9), it is straightforward to derive
RSR = R), we have

Tr[P̃S] = Tr[RSPSRS]
= Tr[RSPS] , Tr[PS]. (11)

The inequality arises because the reference density matrix P
is usually not MAB-representable.

Gradient-based optimization can locate the optimal B
as the minimizer of Eq. (10). The initial guess for the
MAB (and its orthogonal complement in the span of the
secondary basis functions on each atomic site, which is
denoted by V) is obtained by diagonalizing atomic blocks
of the reference density matrix, appropriately transformed75
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as P′A = XT
ASAPASAXA, where SA is the overlap matrix

of the secondary basis functions on A, and XA is the
canonical orthogonalizer for them. With UA representing the
eigenvectors of P′A, the initial B and V are set to

(Binit
A )Aµ

Ai
= (XA)Aµ

Ap
(UA)Ap

Ai
, (12a)

(V init
A )Aµ

Aa
= (XA)Aµ

Ap
(UA)Ap

Aa
, (12b)

where (UA)Ap
Ai

denotes the eigenvectors corresponding to the
mA largest eigenvalues of P′A (mA is the rank of minimal basis
for atom A), and (UA)Ap

Aa
denotes the remaining eigenvectors.

This gives the initial partitioning of the Hilbert space that can
be represented symbolically as

IA = XA = BA ⊕ VA,

I =

NA
A=1

IA.
(13)

Since the MAB functions (and the complementary ones) are
constructed by on-site contractions of the secondary basis, the
variables that parameterize the MAB are intra-atomic orbital
rotations. Akin to Ref. 52, a single on-block unitary transform
is parameterized by the exponential of an antisymmetric
matrix,108 which ensures that the updated atomic orbitals stay
on the same manifold,

[B(θ)]Xµ
Xi = CXµ

Xr exp
�
θXr

Xi

�
, (14)

where CXµ
Xr denotes the union of the MAB and the comple-

mentary functions on atom X . To enforce antisymmetry of
θ, it is further parameterized by ∆ which contains all the
independent variables,

θXr
Xi =

�
∆
XrXs − (∆†)XrXs

�
σXsXi

=
�
∆
XrXs − ∆XsXr

�
σXsXi. (15)

The desired gradient, evaluated at ∆ = 0, is

∂E
∂∆ZpZq

=

X,Y

∂E
∂RXµYν

∂RXµYν

∂∆ZpZq

=

X,Y

(SPSRF + FRSPS)YνXµ
∂RXµYν

∂∆ZpZq
. (16)

E is invariant with respect to orbital rotations within the MAB
space (p = i,q = j), or within the space of complementary
excluded vectors (p = a,q = b), as these rotations leave R
unchanged. Therefore, the non-zero gradient comes only from
variations of ∆ZiZa. Using the identities

∂BXµ
X j

∂∆ZiZa
= −V Xµ

Xaδ
X
ZσXiX j (17)

and

∂(σ−1)
∂∆

= −(σ−1)∂σ
∂∆

(σ−1), (18)

the desired gradient expression is given by

∂E
∂∆ZiZa

= −2σZiZ j

�(σ−1)BTG(I − RS)�Z j

Zµ
V Zµ

Za, (19)

where, for brevity, G = ∂E/∂R as defined in Eq. (16).
More details about the derivation of Eq. (19) is provided
in Appendix A.

FIG. 3. Illustration of the MAB optimization procedure. Atom centers X and
Y correspond to two distinct diagonal blocks of the B matrix. Xi,Yi represent
the MAB functions on these sites, and Xa, Ya represent the excluded basis
functions.

Once the gradient at the current position is computed, the
optimization algorithm will generate a new step (∆) based on
it (and the previous gradients and steps). The equations for
the exponential transformation were derived in Ref. 108. The
update for the MAB can be represented as

B(n) = B(n−1) *
,

U cos p1/2UT

−∆†Up1/2 sin p1/2UT
+
-
. (20)

U and p stand for eigenvectors and eigenvalues of the
matrix quantity ∆∆†, respectively, and note that the unitary
transformations are atom-blocked operations. When the
iterative optimization converges, B represents a minimal basis
energetically adapted to the chemical environment described
by the reference density matrix (from PRB-SCF). Figure 3
illustrates the MAB optimization procedure. Finally, we note
that for unrestricted cases, the MABs for α and β electrons are
optimized separately (they are completely decoupled), using
the same objective function form.

With the MAB defined, a converged SCF solution can be
obtained in this basis. The SCF energy in the fixed MAB will
be an approximation to the energy evaluated by PAO-SCF,
which directly minimizes the SCF energy with respect to the
generators of the MAB as well as the variables defining the
density matrix. These two approaches will be compared in
Sec. IV.

C. Modified definition of the minimal adaptive basis

The size of a minimal basis only depends on the principal
quantum number of the atom’s valence shell, since a complete
set of angular momentum functions are needed to fulfill the
requirement of spatial isotropy. This definition usually works
very well, but there are two types of exceptions. First, in
some cases, the standard rank of the minimal basis includes
redundant functions. For example, the minimal basis of lithium
(n = 2) consists of 5 functions, although only two of them
are required to describe its 1s22s1 configuration. The same
applies to many other electron-deficient species like cations
and radicals. The presence of redundant functions causes
difficulties in converging the MAB optimization procedure.
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ALGORITHM 1. Algorithm that flexibly adjusts (truncates or expands) the
size of the MAB for special systems, based on quantities already computed
when generating the initial guess for the MAB optimization.

Second, in some cases, the standard rank of the minimal basis
is too small to accurately describe the bonding. Examples
include some hypervalent molecules (e.g., SO3 and ClF3), and,
occasionally, molecular anions. In such cases, the standard
rank of the MAB will lead to larger errors in the resulting
molecular energies, which can be greatly reduced if a certain
number of additional MAB functions are judiciously added to
the appropriate atomic centers.

In both cases, we can adjust the rank of the MAB
appropriately based on information that is already available
from the initial PRB-SCF calculation. The resulting procedure,
shown in Algorithm 1, can either truncate or augment the
MAB dimension on each atom. The number of significant
eigenvalues (NSig) for each atom is set to the number of
eigenvalues of P′A that are above a first threshold (thresh1,
whose default value is 0.01). The MAB dimension will be
reduced to NSig if that is smaller than a minimal basis (Nmin).
On the other hand, when Nmin < NSig, the algorithm expands
the MAB dimension by the number of eigenvalues beyond Nmin

that satisfy EA(i)/EA(Nmin) > thresh2 (thresh2 has a default
value of 0.02, i.e., eigenvalues that are larger than EA(Nmin)/50
will be included), which will allow a lower optimized MAB-
SCF energy. The default values of these two thresholds are
empirically determined based on the performance on the
hypervalent molecules in the G2 set (see Sec. IV).

D. Modified MAB objective function

The objective function given by Eq. (10) can be rewritten
as follows:

E = Tr
�
RSCoCT

oSRF
�

= Tr
�
CT

oSRFRSCo

�

= Tr[C̃T
oFC̃o], (21)

where C̃o = RSCo represents the PRB-optimized occupied
MOs after being projected into the MAB space. For stable
species, the energies of occupied MOs should all be negative,
and thus minimizing E corresponds to retaining as many of
the bound electrons as possible.

A disaster occurs in the MAB optimization if an occupied
MO has a positive energy, because minimization will result
in loss of those electrons. With inexact functionals, this
occasionally happens for anions. For example, the energy
of the three 2p orbitals in F− is 0.001 Eh with the B3LYP
functional (hybrid), and 0.056 Eh with B97-D (pure). With
these functionals, the resulting value of Tr[RSPS] (number
of electrons captured by P̃) is close to 2 when the MAB
is optimized, which indicates that the six 2p electrons are
missing! This is completely unphysical, and causes the SCF
energy computed with the MAB to be qualitatively incorrect.

Such difficulties can be avoided by modifying the
eigenvalue structure of F to ensure that all occupied levels are
negative. This can be done by applying a uniform shift to all
the eigenvalues,

F′ = F − λS (22)

using CTSC = I. The shift, λ, is set to be

λ = ε(HOMO) + α [ε(LUMO) − ε(HOMO)] , (23)

where 0 < α ≤ 1 so that the zero energy lies between the
HOMO and LUMO calculated by PRB-SCF (note: such
a shift is applied only when ϵ(HOMO) is detected to be
positive). The “mixing” parameter α = 0.75 is empirically
selected based on the performance of our method on small
(monoatomic and diatomic) anions (for more details, see
Sec. 1 of the supplementary material109). Replacing F with F′
in Eq. (10) gives a modified objective function for the MAB,

E = Tr [RSPSR(F − λS)]
= Tr[RSPSRF] − λTr[RSPS]. (24)

When λ > 0, the new term resembles a penalty for losing
electrons, which can be made explicit by adding an additional
constant, λNelec, to the RHS,

E = Tr[RSPSRF] + λ (Nelec − Tr[RSPS]) . (25)

E. Perturbation correction schemes

Based on the data presented in Refs. 89 and 90, a
significant difference exists between PAO-SCF and exact
SCF results. To reduce this gap, computationally inexpensive
correction schemes based on perturbation theory are useful.
Analogous to the dual-basis methods, the converged MAB-
SCF solution serves as the primary basis reference, and
the contribution of non-Brillouin singles to the second-order
perturbative (PT2) energy correction is given by63

δE = Tr

F(1)
OV

T(1)
VO


. (26)

Here F denotes the Fock matrix built upon the MAB-SCF
density projected into the secondary basis: F = F(P̃). The
first-order T-amplitude satisfies the following linear equation:

F(1)
VO
+ F(0)

VVT(1)
VO
− T(1)

VO
F(0)
OO
= 0(1)

VO
. (27)
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In the pseudo-canonicalized MO basis (obtained by diago-
nalizing FOO and FVV separately, see Appendix C), Eq. (27)
reduces to a simpler form,

T (1)
ai = −F(1)

ai /
(
ϵ
(0)
a − ϵ (0)i

)
. (28)

Correspondingly, the perturbative energy lowering becomes

δE = −

ia

|F(1)
ai |2/

(
ϵ
(0)
a − ϵ (0)i

)
, (29)

which can be interpreted as an energy-weighted steepest
descent (or an approximate Newton) step.63,90 Alternatively,
other corrections that involve a full diagonalization of the Fock
matrix can be applied, such as the aforementioned DB-SCF
(only slightly different from PT2) and DFPC methods. The
latter performs a single update of the density matrix in the
secondary basis (by diagonalizing F), and then recomputes
the full SCF energy based upon that density matrix (the result
will thus be variational).

III. COMPUTATIONAL DETAILS

A pilot implementation of this new SCF scheme is accom-
plished in a development version of the Q-Chem 4.3 pack-
age.110 A preconditioned limited-memory BFGS (L-BFGS)
algorithm111,112 is implemented for solving the MAB
optimization problem efficiently. The inverted on-diagonal
blocks of the Hessian matrix for the objective function
(second derivatives of the function value with regard to
orbital rotations on the same atomic site) are employed
as the preconditioner of the L-BFGS algorithm. In most
scenarios, this preconditioning strategy leads to convergence
of the MAB optimization in a reasonable number of iterations
(101–102), with only moderate additional cost to evaluate
the preconditioner. More details about the preconditioned L-
BFGS algorithm and the evaluation of the on-diagonal blocks
of the Hessian are provided in Appendix B.

In the current implementation, all the density matrix
updates are computed by diagonalizing F (Fock matrix in
the dimension of PRB or MAB), and the only diagonalization
in the secondary basis dimension (Nv × Nv to be exact) is
required by the perturbation correction. However, to obtain
F (for the time being) still requires contracting the ERI
tensor with a PRB- or MAB-representable density matrix in
the secondary basis (using restricted KS Fock matrix as an
example),

Fµν = hµν + 2 (µν |λσ) P̃λσ − κ (µσ |λν) P̃λσ + (Vxc)µν, (30)

where κ is the proportion of exact exchange in the employed
functional. Then F is transformed back into the primary basis
through Eq. (3). This choice is actually less efficient, because
quantities in the primary basis, like Pαβ, Cα

i, can be directly
utilized to construct F , which will significantly reduce the
dimension of the contraction. Therefore, with our preliminary
implementation, we will focus on validating the accuracy
of MAB-SCF (PC) in this work, and the potential efficient
implementation of this method will be briefly discussed in
Sec. VI.

All the results for TC and NC datasets are generated with
the KS-DFT routines in Q-Chem 4.3 as well. A (75,302) grid

(75 radial shells with 302 Lebedev points in each) is used for
all employed exchange-correlation (XC) functionals, and the
SG-1 grid113 is used for the VV1018 NLC functional. Unless
otherwise noted, 6-31+G(d) is used as the reference basis
in PRB-SCF. Smaller reference bases could alternatively be
employed, at the cost of diminished accuracy (see the results
provided in Sec. 2 of the supplementary material109). The
optimization of the MAB converges to 10−6 a.u., while all the
SCF calculations converge to 10−8 a.u. (RMS of the gradient).
To determine the appropriate dimension of the MAB, the
default values of thresh1 and thresh2 adopted by Algorithm 1
are set to 0.01 and 0.02, respectively. We note that, in this
work, the “adding vector” strategy is by default turned off and
only utilized for specified hypervalent molecules.

IV. PRELIMINARY TESTS ON G2 THERMOCHEMISTRY

A. Comparison with PAO-SCF

We start investigating the accuracy of our method
by performing a series of preliminary tests on the G2
thermochemistry set.35 To test the quality of the optimized
MAB, the performance of MAB-SCF on the G2 set is
compared to PAO-SCF, since the latter gives the limiting
behavior of an atom-centered minimal basis. For the reasons
discussed in Sec. II C, the minimal basis models (including
MAB and PAO) are not sufficient for describing hypervalent
molecules. Thus, we designate molecules containing Al, Si,
P, S, Cl centers that are coordinated by highly electronegative
atoms (e.g., O, F, Cl) as hypervalent, including SO, ClO,
SO2, AlF3, AlCl3, SiF4, SiCl4, PF3, ClF3, and (CH3)2SO, and
exclude them from the test set preliminarily.

The results for this “pruned” G2 set (138 molecules)
computed with three functionals are collected in Table II (aQZ
is the target secondary basis). To make it a fair comparison,
molecules that fail to converge their PAOs (listed in the table

TABLE II. Summary of the errors of PAO-SCF and MAB-SCF (without
and with PT2 correction) for the “pruned” G2 set against the conventional
SCF results. aQZ is employed as the secondary (target) basis. Maximum
errors (MAX), root-mean-square deviations (RMSD), and mean-signed errors
(MSE) are reported in kcal/mol. Molecules where PAO failed to converge
(listed in the footnotes) are excluded for both PAO-SCF and MAB-SCF when
evaluating the statistical errors.

B97-Da B97M-Vb B3LYPc

SCF energies
MAB PAO MAB PAO MAB PAO

MAX 25.11 25.48 26.70 26.96 24.39 24.85
RMSD 7.07 7.27 8.06 8.07 7.05 7.18
MSE 5.59 5.72 6.54 6.49 5.62 5.66

With PT2 correction
MAB PAO MAB PAO MAB PAO

MAX −0.26 −0.14 −0.14 −0.08 0.84 0.91
RMSD 0.06 0.03 0.03 0.02 0.18 0.20
MSE −0.02 0.00 −0.02 −0.01 0.14 0.15

aConvergence failures: ·CCH.
bConvergence failures: SO2, ClF3, ·SH.
cConvergence failures: NaCl.
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footnotes) are also excluded when reporting the statistical
errors. At the SCF level (i.e., without PT2 correction), PAO-
SCF and MAB-SCF show similar accuracy with respect
to the exact SCF results for all three tested functionals.
Surprisingly, the MAB-SCF results are slightly better as a
result of error cancellation (PAO-SCF is exact for atomic
energies). Applying the PT2 correction significantly reduces
the errors of both schemes. For the two pure functionals
(B97-D and B97M-V), the RMSDs of MAB+PT2 are smaller
than 0.1 kcal/mol (∼0.05 kcal/mol), and they are close to
those of PAO+PT2. For B3LYP, the RMSDs of both schemes
noticeably increase, which suggests diminished effectiveness
of PT2 when hybrid functionals are used. Nevertheless, we
notice that the performance of MAB+PT2 is rather similar to
that of PAO+PT2.

To better compute the energies of the hypervalent
molecules, we increase the dimensions of their MAB based on
Algorithm 1. The modified MAB+PT2 results are compared
with those using the standard minimal basis dimensions in
Table III. For a majority of these molecules (ClO, SiF4, SiCl4,
PF3, (CH3)2SO, and presumably SO2 and ClF3), the errors are
reduced by over 10 times by using the “adding vector” strategy.
The degree of inadequacy of the conventional minimal basis
dimension is perhaps a measure of molecular hypervalency.
Indeed, species like SiF4, PF3 do not formally violate the
“octet” rule, which indicates that molecular hypervalency
may exist beyond its usual definition. On the other hand,
AlCl3 and AlF3 do not seem to be typical hypervalent species,
because the use of standard minimal basis dimensions does
not result in errors as large as those for the other molecules
listed in Table III.

Combining these specially treated hypervalent molecules
with the other 138 molecules computed with the standard
MAB model, the overall RMSD of MAB+PT2 against
conventional SCF results for the G2 set is 0.033 kcal/mol.

TABLE III. Errors (in kcal/mol) for the atomization energies of the hyper-
valent molecules in the G2 set computed with B97M-V. aQZ is used as
the secondary basis. Results of unmodified MAB+PT2, MAB+PT2 with the
“adding vector” strategy, and PAO+PT2 are compared against exact SCF
results. The corresponding statistical errors for the full G2 set (including these
molecules) are also reported.

MAB+PT2 MAB+PT2
(normal) (add_vec) PAO+PT2

SO 0.049 0.022 0.085
ClO −0.182 0.010 −0.120
SO2 −0.990 0.001 N/A
AlF3 −0.030 0.002 0.002
AlCl3 0.050 −0.016 −0.017
SiF4 −0.214 −0.007 −0.268
SiCl4 −0.445 −0.009 −0.544
PF3 −0.720 0.009 −0.544
ClF3 −1.857 −0.020 N/A
SO(CH3)2 −1.173 −0.026 −1.061

G2 statistics (all molecules)
MAX −1.857 −0.141 −1.061
RMSD 0.238 0.033 0.114
MSE −0.058 −0.017 −0.024

TABLE IV. Modifications of the MAB dimensions on the central atoms of
the hypervalent molecules in the G2 set after the “adding vector” strategy
is applied. The number of MAB functions for the coordinating atoms also
occasionally changes (not shown).

Central dim (MAB) dim (MAB)
Molecule atom (original) (add_vec)

AlF3 Al 9 16
AlCl3 Al 9 13

SiF4 Si 9 15
SiCl4 Si 9 15

PF3 P 9 14

SO S 9 13
SO2 S 9 13
(CH3)2SO S 9 12

ClO Cl 9 12
ClF3 Cl 9 14

This result is only minimally different from the RMSD for
the “pruned” G2 set (with B97M-V), by contrast with the
poor results for standard MAB+PT2 and PAO+PT2 when
hypervalent molecules are included. Therefore in the later G2
tests, unless otherwise specified, statistical errors evaluated
including with all the molecules will be reported with the
hypervalent ones separately treated via Algorithm 1.

Table IV shows how the dimensions of the MAB are
increased on the central atoms of the hypervalent molecules
after applying Algorithm 1. According to the rightmost
column, the modified MAB function counts are usually close
to those of a minimal basis plus one set of d (polarization)
functions. Although AlF3 and AlCl3 do not show strong
hypervalent character according to Table III, the Al atom
nonetheless gains additional MAB basis functions.

In general, the MAB optimization problem is consider-
ably easier to converge than the aforementioned “double”
PAO-SCF optimization. In contrast to PAO-SCF that
encounters several convergence problems (mentioned in
Table II), no MAB convergence failure is detected for the
entire G2 set with all three tested functionals. Furthermore,
in contrast to PAO-SCF, the MAB optimization is decoupled
from density matrix optimization, and thus MAB iteration
counts will not directly affect the required number of SCF
cycles. This is extremely important because of the much
more significant cost per iteration for the latter. Table V
lists molecules in the G2 set that require over 100 iterations
to converge their PAOs (using B97M-V/aQZ). Apart from
several convergence failures, the PAO-SCF scheme requires
an enormous number of Fock matrix constructions for some
molecules, such as NaCl. The MAB scheme, on the other
hand, attains the optimized adaptive basis in fewer iterations
for most of these molecules. Even in cases like COS and
C2H4O (oxirane) where the iteration counts for optimizing the
adaptive basis are similar, MAB-SCF is still far more efficient
because many fewer Fock builds are required. Therefore,
MAB-SCF appears to be a more feasible adaptive basis SCF
scheme than PAO-SCF, with comparable accuracy.
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TABLE V. Molecules in the G2 set that require over 100 iterations to con-
verge their PAOs. The counts of iterative optimization steps and Fock builds
required to converge PAO-SCF and MAB-SCF are compared. For several
radicals (CH, ·SH, CH3CH2O·), considerably larger number of iterations are
required by the PRB-SCF step because the geometric direct minimization
(GDM) algorithm114 is utilized to circumvent unstable SCF solutions.

Num of opt steps Num of Fock builds

Molecules PAO MAB PAO PRB MAB

CH 277 93 277 27 6
Na2 1219 23 1219 7 3
Si2 145 20 145 16 22
NaCl 3208 47 3208 9 5
SO2 N/A 212 N/A 11 8
COS 148 146 148 10 7
ClF3 N/A 83 N/A 12 8
C2Cl4 614 80 614 9 5
C4H6 (2-butyne) 490 149 490 10 7
C2H4O 109 111 109 9 6
SH N/A 60 N/A 48 8
CH3CH2O 450 156 450 44 9

B. Functional dependence: pure vs hybrids

Table II already suggests that the performance of
MAB+PT2 is not completely functional-independent. A clear
difference exists between using pure and hybrid functionals.
Therefore, we must investigate the performance of this method
when different flavors of density functionals are employed.
Using the G2 set with aug-cc-pVQZ as the secondary basis,
Table VI explores the performance of 13 density functionals.
The first seven functionals do not contain exact exchange,
including three GGAs (B97-D, BLYP,26,27 PBE5) and four
meta-GGAs (TPSS,8 MGGA_MS1,115 M06-L,116 B97M-V).
For these functionals, the MAB+PT2 scheme demonstrates
good accuracy (M06-L is the largest outlier), while the RMSDs
computed by MAB+DFPC are roughly twice as large. Thus
PT2 appears preferable.

TABLE VI. RMSDs (in kcal/mol) of MAB-SCF with two different pertur-
bation correction schemes (PT2 and DFPC) for the G2 set. Different pure
(B97-D, BLYP, PBE, TPSS, MGGA_MS1, M06-L, B97M-V) and hybrid
(TPSSh, B3LYP, PBE0, M06-2X, ωB97X-D, ωB97X-V) functionals are
investigated. aQZ is employed as the secondary basis for all the calculations.

Functionals MAB+PT2 MAB+DFPC

B97-D 0.053 0.115
BLYP 0.074 0.148
PBE 0.065 0.132
TPSS 0.055 0.119
MGGA_MS1 0.042 0.108
M06-L 0.144 0.156
B97M-V 0.033 0.079

TPSSh 0.099 0.086
B3LYP 0.181 0.083
PBE0 0.220 0.066
M06-2X 0.458 0.076
ωB97X-D 0.645 0.119
ωB97X-V 0.668 0.133

The other six functionals in Table VI are hybrid
functionals, including TPSSh (10%),117 B3LYP (20%),
PBE0 (25%),118 M06-2X (54%), ωB97X-D (RSH),119 and
ωB97X-V (RSH) (“%” denotes the proportion of exact
exchange). They show results that contrast with those of
the pure functionals. For these hybrids, PT2 undershoots
the exact SCF energy, and the size of the errors grows
roughly with the amount of exact exchange. This leads
to unsatisfactory accuracy (RMSD > 0.2 kcal/mol) for
functionals that contain more exact exchange than B3LYP.
The MAB+DFPC approach, on the other hand, shows
comparatively better performance across the hybrids (RMSDs
are around 0.1 kcal/mol), than PT2. For the two RSH
functionals, the results of MAB+DFPC are 5–6 times more
accurate than MAB+PT2.

We conclude that DFPC should be used as the correction
to MAB-SCF when hybrid functionals are employed, at the
expense of one more Fock build in the secondary basis. On the
other hand, MAB+PT2 is less expensive and more accurate
for pure functionals.

C. Basis set convergence

Different basis sets are employed for KS-DFT calcula-
tions, based on considerations such as accuracy, efficiency,
and user experience. With the B97M-V functional, we assess
the performance of MAB+PT2 with several widely used
basis sets, including those in Dunning’s correlation-consistent
series (aTZ, QZ, aQZ),28,29 Jensen’s polarization-consistent
series (apc-2, pc-3, apc-3),120–122 and the Karlsruhe “def2”
series (TZVPPD, QZVPP, QZVPPD).33 The popular “large
Pople” basis set 6-311++G(3df,3pd)123,124 is also included.
These basis sets are augmented triple-ζ quality or higher,
because our goal is to approach CBS limit results.

The RMSDs for the G2 set using different target
secondary basis sets are displayed in Figure 4. The errors
are typically below 0.1 kcal/mol, which indicates excellent
transferability. The best performance is achieved by two
quadruple-ζ basis sets with diffuse functions, aQZ and
QZVPPD. For their unaugmented counterparts, QZ and
QZVPP, the RMSDs are slightly larger, although still
satisfactory. Since diffuse functions typically have no major
impact on the accuracy of evaluated energetics for bonded
interactions, the compatibility of MAB+PT2 with these
unaugmented basis sets is helpful. The largest RMS errors
are produced by Jensen’s pc-3 and aug-pc-3 basis sets. This is
mostly due to the inaccurate atomic energy for Li: the RMSDs
are reduced to 0.063 (pc-3) and 0.059 (apc-3) kcal/mol if
we exclude three Li-containing molecules (Li2, LiF, and LiH)
from the G2 set. As these are high-quality basis sets, the
outlier might be due to poor compatibility of pc-3/apc-3
with the employed reference basis, 6-31+G(d), for the Li
atom. Computational cost aside, any of the largest basis sets
approach the true CBS limit and also the top accuracy of our
method.

Ultimately, MAB-SCF with a perturbation correction
scheme (MAB-SCF (PC)) might replace conventional SCF in
KS-DFT calculations to approach the CBS limit. Therefore,
we want to see how MAB-SCF (PC) approaches the CBS
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FIG. 4. Assessment of the performance of MAB+PT2 with 10 secondary basis sets. RMSDs (vs. exact SCF) for the G2 set calculated with the B97M-V
functional are reported. Different colors are used to indicate distinct basis set categories: augmented triple-ζ (red), unaugmented quadruple-ζ (blue), and
augmented quadruple-ζ (dark green).

FIG. 5. Basis set convergence of
the functional RMSDs for the G2
set evaluated by MAB-based methods
(solid) and conventional SCF (transpar-
ent). The reference values are taken
from Ref. 36. Dunning’s augmented
correlation-consistent basis sets are
utilized to approach the CBS limit
(D: red, T: green, Q: blue). PT2 and
DFPC correction schemes are applied
on top of the MAB-SCF results of local
(B97-D, B97M-V) and hybrid (B3LYP,
M06-2X, ωB97X-V) functionals, re-
spectively.

limit with the increasing size of the secondary basis. For that
purpose, we extend Figure 5 (which motivates this work)
with the functional RMSDs evaluated by MAB+PT2 (for
B97-D, B97M-V) and MAB+DFPC (for B3LYP, M06-2X,
ωB97X-V), as shown in Figure 5. These results are quite
encouraging: the conventional SCF convergence towards
the CBS limit of each functional is closely reproduced by
MAB-SCF (PC). At the aQZ level, the largest difference
between MAB-SCF (PC) and exact SCF results is only about
0.03 kcal/mol (for B97-D and B3LYP), which is below 1%
of the intrinsic (CBS) error of the functional itself, and thus
negligible. Larger differences between these two sets of results
exist at the aDZ level (the largest gap is 0.26 kcal/mol for
ωB97X-V/aDZ), but this is not relevant to our target of the
CBS limit.

V. ADDITIONAL ACCURACY TESTS

A. Thermochemistry

We will assess how the performance of MAB-SCF (PC)
transfers to other thermochemistry (TC) datasets. Three
density functionals (B97-D, B97M-V, B3LYP) will be
employed to examine the accuracy of MAB-SCF (PC), using
aQZ as the secondary basis, and the perturbation correction
schemes are applied in the same way as in Figure 5.
First we consider the W4-11 dataset,125 which includes 99
bond dissociation energies (BDE99), 707 heavy-atom transfer
reaction energies (HAT707), 20 isomerization energies

(ISO20), 13 nucleophilic substitution reaction energies
(SN13), and 140 total atomization energies (TAE140). Note
that the multi-reference (MR) species in W4-11 are included in
this test. Thirteen species are separately treated as hypervalent
molecules: AlF3, AlCl3, SiF4, P4, SO, SO2, SO3, S2O, S2, S3,
S4, ClO, and OClO (see the previous discussion for the G2
set).

Table VII contains the RMSDs of the MAB-SCF (PC)
approach (against exact SCF) for W4-11, where different
TC categories have been separated. The overall performance
is similar to that for the G2 set, which shows encouraging
transferability. Taking B97M-V as an example, the smallest
and largest RMSDs of MAB+PT2 (vs. exact SCF) are obtained
on SN13 (0.02 kcal/mol) and HAT707 (0.06 kcal/mol),
respectively, while the corresponding functional RMSDs
(vs. W4 reference) are 1.39 kcal/mol and 3.90 kcal/mol.
Therefore, the errors caused by replacing conventional
SCF with MAB-SCF (PC) are usually smaller than intrinsic
functional errors by one or two orders of magnitude. A
more straightforward comparison is provided by Figure 6: for
B97M-V, the functional RMSDs computed via the MAB+PT2
approach show almost no difference compared to those by
normal SCF method.

We also examined the performance of MAB-SCF (PC)
on other TC datasets, including adiabatic ionization potentials
and electron affinities (21 for each: G21IP and G21EA),126,127

38 non-hydrogen transfer and 38 hydrogen transfer barrier
heights (NHTBH38128 and HTBH38129), and 14 alkane
isomerization energies (Pentane14130). The computational
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TABLE VII. RMSDs (in kcal/mol) of MAB-SCF (PC) for the W4-11 dataset
(vs. exact SCF) evaluated with using three different functionals. PT2 is
applied for B97-D and B97M-V while DFPC is used for B3LYP. aQZ is used
as the secondary basis.

B97-D B97M-V B3LYP

BDE99 0.061 0.038 0.070
HAT707 0.101 0.061 0.100
ISO20 0.068 0.048 0.085
SN13 0.034 0.018 0.053
TAE140 0.071 0.046 0.096

Overall 0.093 0.057 0.096

details are identical to those for W4-11, except for the anions in
G21EA, HTBH38 and NHTBH38, where the modified MAB
objective function (introduced in Sec. II D) is automatically
applied to avoid the emergence of unphysical results. The
RMSDs of MAB-SCF (PC) are presented in Table VIII. We
see that HTBH38 and Pentane14 are relatively easier cases
for MAB-SCF (PC) to approximate the exact SCF result;
and for G21IP and NHTBH38, the size of the RMSDs
is similar to that for those W4-11 subsets (e.g., BDE99
and SN13).

The largest RMSD appears on the G21EA dataset.
Although none of the results are qualitatively incorrect by
applying the modified MAB objective function, there are
several molecular anions whose absolute energies evaluated
by MAB-SCF (PC) are rather unsatisfactory: NO−, PO−,
O−2 , and S−2 . Based on the discussions in Sec. II C, the
“adding vector” strategy may also be applied for these
electron-abundant species. As a result, the absolute energies
of these anions are significantly improved, as shown in
Table IX. With these 4 molecular anions specially treated,
the RMSDs for the G21EA dataset are recalculated and
the results are also presented in Table VIII, which turn out
to be more comparable to the RMSDs for other TC test
sets.

FIG. 6. B97M-V’s RMSDs for W4-11 (vs. reference values) evaluated by
MAB+PT2 (blue) and conventional SCF (red). Very similar accuracy is
obtained by these two SCF schemes at the B97M-V/aQZ level of theory.

TABLE VIII. RMSDs (in kcal/mol) of MAB-SCF (PC) for TC datasets other
than W4-11: G21IP, G21EA, HTBH38, NHTBH38, Pentane14. The numbers
in parentheses are recalculated RMSDs for G21EA after applying the “adding
vector” strategy for four diatomic anions: NO−, PO−, O−2 , and S−2 .

B97-D B97M-V B3LYP

G21IP 0.050 0.036 0.040

G21EA
0.598 0.412 0.455

(0.101) (0.027) (0.078)

HTBH38 0.016 0.035 0.031
NHTBH38 0.099 0.071 0.118

Pentane14 0.005 0.007 0.002

B. Non-covalent interactions

One of the key improvements in modern density
functionals is for non-covalent interactions (NC). Therefore,
we assess the performance of MAB-SCF (PC) on several
NC datasets, including A24 (24 small NC complexes),30

S22 (22 diverse small- to medium-sized NC complexes at
the equilibrium geometries),131,132 HB15 (15 ionic hydrogen
bond interactions),133 H2O6Bind8 (binding energies of eight
configurations of water hexamers),134,135 and FmH2O10
(binding energies of 10 configurations of F−(H2O)10

134,135).
Since many NC interactions have smaller magnitudes than TC
energy differences, and some modern density functionals are
able to achieve very small errors for them (e.g., B97M-V’s
unweighted RMSD for 1458 non-covalent interactions is 0.22
kcal/mol20), higher accuracy is needed for the MAB approach
to match the exact SCF results.

As before, three density functionals (B97-D, B97M-V,
B3LYP-D3(0)) are employed to assess the performance of
MAB-SCF (PC) on these NC datasets. To avoid counterpoise
(CP) corrections, we choose def2-QZVPPD as the secondary
basis, which has fewer functions than aQZ but generates even
smaller BSSEs.136 Table X contains the resulting RMSDs
(vs. exact SCF) for these NC datasets. Very small MAB-
SCF (PC) errors are found for dimer binding energies (A24,
S22, and HB15), with all three functionals. This is very
encouraging for treating the most common non-covalent
interactions by MAB-SCF (PC) instead of conventional
SCF. Larger errors appear for the cluster binding energies
(H2O6Bind8, FmH2O10), due to the larger magnitude of these
interactions (H2O6Bind8: −40 to −50 kcal/mol; FmH2O10:

TABLE IX. Errors in kcal/mol (vs. exact SCF) for the absolute energies
of four diatomic anions (NO−, PO−, O−2 , and S−2 ) evaluated with standard
MAB-SCF (PC) (“Standard”) and with the “adding vector” strategy turned
on (“Add_Vec”). Other computational details are the same as in Table VIII.

Standard Add_Vec

B97-D B97M-V B3LYP B97-D B97M-V B3LYP

NO− −2.36 −1.63 1.60 −0.13 −0.06 0.10
PO− −0.52 −0.55 0.92 −0.02 −0.02 0.17
O−2 −2.04 −1.25 1.66 −0.01 −0.02 0.07
S−2 −0.41 −0.16 0.23 −0.01 0.02 0.02
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TABLE X. RMSDs (in kcal/mol) of MAB-SCF (PC) for five NC datasets:
A24, S22, HB15, H2O6Bind8, and FmH2O10. Data points computed by
conventional SCF using the def2-QZVPPD basis set (noCP) provide the
reference values.

B97-D B97M-V B3LYP-D3(0)

A24 0.009 0.005 0.009
S22 0.015 0.023 0.025
HB15 0.021 0.027 0.023
H2O6Bind8 0.061 0.085 0.118
FmH2O10 0.078 0.026 0.350

about −170 kcal/mol) and the uniformity of their interaction
types (systematic errors accumulate on one single direction
through all the data points). The largest outlier appears on
FmH2O10 when the B3LYP-D3(0) functional is employed,
mostly due to the less accurate MAB-DFPC result for F− (the
error is 0.3 kcal/mol vs. exact SCF) with that functional.

The accurate description of these non-covalent inter-
actions by B97M-V can also be reproduced using MAB-
SCF (PC), and the resulting RMS errors (vs. reference data)
are compared with the exact SCF results in Figure 7. Only
minimal differences exist between two sets of RMSDs for the
dimer binding energies, while the monotonic deviations of the
MAB-SCF (PC) results for each single data point contribute
to more pronounced differences for the clusters. Nevertheless,
even for H2O6Bind8 where the largest deviation occurs,
the RMSD vs. exact SCF results (0.085 kcal/mol) is only
0.1%–0.2% of the magnitude of the corresponding binding
energies. In terms of the evaluation of relative energies, fairly
insignificant errors are caused by using MAB-SCF (PC).

Finally we test the accuracy of MAB-SCF (PC) on
large non-covalent complexes, using the seven dispersion-
bound systems of the recently proposed L7 dataset,137

including (the abbreviations simply follow Ref. 137):
stacked circumcoronene-adenine dimer (C3A), stacked
circumcoronene with a Watson-Crick G-C base pair (C3GC),
parallel displaced coronene dimer (C2C2PD), stacked Watson-
Crick G-C base pairs (GCGC), stacked guanine trimer (GGG),

FIG. 7. B97M-V’s RMSDs for 5 NC datasets (vs. reference values) evaluated
by MAB-SCF (PC) (blue) and conventional SCF (red), respectively. def2-
QZVPPD is employed as the secondary basis set without using counterpoise
corrections.

parallel stacked octadecane dimer (CBH), and phenylalanine
residue trimer (PHE). Due to the tremendous computational
effort required for these systems, our calculations were
performed with two pure functionals (B97-D, B97M-V)
using aug-cc-pVTZ as the secondary basis. Binding energies
of these complexes evaluated by conventional SCF and
MAB-SCF (PC) are compared in Table XI. For most of
them, the differences between the results given by two SCF
schemes are much smaller than 1% of the magnitude of their
binding energies, which indicates the satisfactory accuracy of
MAB-SCF (PC) for these large-scale non-covalent interacting
systems. The only exception is the guanine trimer (GGG),
which is primarily due to its very weak binding energy
(−2.33 kcal/mol by B97M-V/aTZ). Due to the lack of reliable
reference values for the time being, we cannot meaningfully
assess the intrinsic functional errors for L7.

VI. DISCUSSION AND FUTURE WORK

The tests performed on a broad range of systems
demonstrate that the overall accuracy of this new approximate
SCF method seems to be encouraging. As the CBS limit is
approached, the functional RMSDs for several representative
TC and NC datasets (G2, W4-11, S22) evaluated by MAB-
SCF (PC) show very small differences compared to the
exact SCF results, as demonstrated in Figures 5, 6, and 7.
In particular, “B97M-V/QZVPPD/MAB+PT2” (or “B97M-
V/aQZ/MAB+PT2”) turns out to be a promising model chem-
istry, because of B97M-V’s very good accuracy for both TC
and NC, its moderate computational cost as a semi-local func-
tional, and its compatibility with the MAB+PT2 approach.

The MAB-SCF (PC) procedure is similar to that of dual-
basis methods (including DB-SCF and DFPC), since they both
first compute an SCF solution in a primary basis (preferably a
subset of the secondary basis) then correct it using perturbation
theory. It is encouraging that MAB-SCF (PC) is able to achieve
comparable accuracy to DB-SCF with a primary basis adap-
tively prepared on the fly, whose size is also much smaller than
those well-trained DB-SCF basis subsets67 when the second-
ary basis approaches the CBS limit. Some comparisons of
these two approaches and related discussion are provided in
Sec. 4 of the supplementary material.109

At least three challenges remain in successfully applying
the MAB-SCF (PC) method. First is the challenge of hybrid
density functionals. According to Table II, there is no
degradation in terms of the quality of the MAB when a
hybrid functional is used: B3LYP in fact has the smallest
RMSD for MAB-SCF among the three tested functionals.
The reason for the poor performance of MAB+PT2 for hybrid
functionals should therefore reside in the PT2 correction
represented by Eq. (29). Assuming that the MABs calculated
by two functionals are of similar quality, the numerators in
Eq. (29) should also have fairly similar sizes. Thus, functional-
dependent differences in the magnitude of the PT2 correction
will be largely determined by the denominators (orbital energy
differences) in Eq. (29). It turns out that the smaller gaps
calculated by pure functionals help reduce the errors of MAB-
SCF more effectively, while hybrid functionals that usually
give larger orbital energy gaps undercorrect. This numerical
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TABLE XI. Binding energies (in kcal/mol) of the L7 complexes evaluated by conventional SCF and MAB-SCF
(PC), using two pure density functionals with dispersion corrections (B97-D, B97M-V) and aug-cc-pVTZ as the
secondary basis. Unsigned percentage error of the MAB-SCF (PC) results are provided.

B97-D B97M-V

Complex Ebind (exact) Ebind (MAB) Error (%) Ebind (exact) Ebind (MAB) Error (%)

C3A −18.514 −18.505 0.05 −17.466 −17.488 0.13
C3GC −31.120 −31.113 0.02 −31.050 −31.130 0.26
C2C2PD −22.355 −22.343 0.05 −22.316 −22.329 0.06
GCGC −15.302 −15.295 0.05 −15.460 −15.514 0.35
GGG −2.485 −2.530 1.81 −2.330 −2.392 2.66
CBH −15.335 −15.330 0.03 −12.396 −12.394 0.02
PBH −23.311 −23.290 0.09 −25.867 −25.872 0.02

result is intriguing since the gaps computed by the hybrids
are usually deemed to be physically more correct. Although
the accuracy of MAB+DFPC is satisfactory in most tested
cases, an extra Fock build using the density matrix in the
secondary basis (not MAB-representable) is required, which
would be preferable to avoid (the reason will be elucidated
below). Additionally, based on Table VI, the accuracy of
MAB+DFPC slightly degrades for RSH functionals as well
despite its clear advantage over MAB+PT2.

A second limitation is that hypervalent molecules are
treated separately in this work by modifying the MAB
dimensions in a semi-automated way (choosing to use the
“adding vector” approach is user-specified). This is because
our algorithm and its related thresholds were chosen to attain
the desired accuracy for hypervalent molecules. This option
increases the size of the MAB (and thus the computational
cost of MAB-SCF) and potentially degrades the convergence
of MAB optimization (see the discussion in Sec. 3 of the
supplementary material109). Further work on wisely adjusting
the algorithm parameters, or possibly refining the present
scheme, is desirable.

The third general challenge is efficient computational
implementation. Although this paper is mainly about the
formulation MAB-SCF (PC) and the validation of its accuracy,
the ultimate goal is to serve as an inexpensive substitute for
conventional SCF as the CBS limit is approached. Compared
to normal SCF, our method involves far fewer degrees of
freedom. The cost of a single density matrix update, if
achieved by diagonalizing the Fock matrix, can be reduced
by up to a factor of (n/m)3, where n is the size of the
secondary basis, and m is the size of the PRB or MAB. For
example, given a model system (CH2)n, there will be 129
basis functions per –CH2– unit if def2-QZVPPD is employed
as the secondary basis, which is roughly 6 times as large as the
PRB (22 functions per unit), and about 18 times as the MAB
(7 functions/unit). Therefore, the prefactor of the computa-
tional cost of this cubic scaling step is significantly reduced
in our scheme. A linear equation solve in the secondary basis
dimension is still required to obtain the PT2 correction, while
that is far less expensive than diagonalization.

Alternatively, O(N) scaling electronic structure methods
can be potentially applied to the MAB-SCF step, since the
overlap matrix of the MAB is extremely well-conditioned, as
demonstrated by Table XII. The diagonalization-free density

matrix update algorithms introduced by Ref. 52 could be
used for the MAB-SCF. However, the feasibility of these
methods for PRB-SCF is not so clear because one set of
diffuse functions is contained in 6-31+G(d).

In practice, however, even for systems as large as the L7
complexes, the Fock matrix construction step still dominates
the computational cost of each SCF cycle due to its large
prefactor when high accuracy is sought. This is despite the
fact that asymptotically that step scales quadratically138 (or
even linearly with special algorithms)40–47 with respect to
system size. In our pilot implementation, the Fock matrix
is built from PRB- or MAB-representable density matrices
that are of secondary basis dimensions, which costs almost
the same as a Fock build in a conventional SCF calculation
within the secondary basis. Therefore, to speed up these Fock
build steps by taking advantage of the properties of the PRB
and MAB becomes the most urgent task for MAB-SCF (PC)
to outperform conventional SCF in terms of computational
efficiency, especially for medium-sized systems. PRB-SCF
can be reformulated as a conventional SCF calculation within
a basis set whose size and shell structure are identical to
6-31+G(d), due to the elimination of high angular momentum
functions during the basis set projection procedure, and the
cost of the involved Fock builds thereby can be significantly
reduced without requiring more sophisticated techniques. For
MAB-SCF, instead of using Eq. (30), the MAB Fock matrix
can be constructed by forming the ERI tensor in the primary
basis first then contracting it with the MAB density matrix, as

Fαβ = hαβ + 2 (αβ |γδ)Pγδ − κ (αγ |βδ)Pγδ + (Vxc)αβ.

(31)

TABLE XII. Comparison of the sizes (N ) and overlap matrix condition
numbers (λ) of the MAB and the target aug-cc-pVTZ basis set on the L7
complexes.

N (MAB) N (aTZ) λ (MAB) λ (aTZ)

C3A 343 3473 12.17 5.07 × 1012

C3GC 393 4002 12.57 7.93 × 1012

C2C2PD 264 2760 13.50 4.32 × 1011

GCGC 210 2208 9.02 1.39 × 108

GGG 180 1863 8.55 1.25 × 108

CBH 256 3404 15.63 1.45 × 109

PHE 267 3036 13.87 6.24 × 108
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Furthermore, quantities like (αβ |γδ) can be efficiently
computed (and stored) using the RI approximation, due to
the highly compact and atom-blocked structure of the MAB.
We intend to present an optimized implementation of MAB-
SCF (PC) and the resulting timings vs. conventional SCF as
soon as these challenges are adequately addressed.

VII. CONCLUSION

In this work, we proposed a new minimal adaptive basis
(MAB) SCF method that can be used in KS-DFT calculations.
Its objective is to permit approach to the complete basis set
(CBS) limit without explicitly performing the calculation in
very large AO basis sets. The key aspects of this paper can be
summarized as follows:

• An MAB is obtained as a molecule-adapted, atom-
blocked transformation from the secondary AO basis.
We have developed a viable optimization method
to obtain an MAB using an inexpensive energy-like
surrogate function based on a reference SCF calculation
in a projected basis of moderate size (the PRB).
Compared to exact energy optimization with respect to
the transformation (the PAO method), our MAB yields
similar total energies with far fewer convergence issues.

• A preconditioned L-BFGS algorithm that requires the
gradient and the on-diagonal blocks of the Hessian
of the objective function is implemented to solve the
MAB optimization problem. In addition, an approach
that modifies the MAB dimension based on chemical
environment is proposed, and demonstrated to be
necessary for hypervalent molecules. These ideas can
potentially be used in PAO calculations and other
adaptive basis models as well.

• Perturbation corrections (PC) are applied to MAB-SCF
to approach the desired accuracy. This resembles DB-
SCF without the need to select or develop the paired
basis subset. The resulting accuracy is assessed on

numerous TC and NC datasets. Measured against exact
SCF results, MAB-SCF (PC) generates <0.15 kcal/mol
RMSDs for most of the tested TC datasets, and even
smaller errors (usually <0.1 kcal/mol) for the NCs.
Encouragingly, as the CBS limit is approached, the
MAB-SCF (PC) method deviates from full SCF one or
two orders of magnitude less than the inherent errors
in today’s best functionals.

• Future work includes further refining the MAB-
SCF (PC) model, and developing an efficient imple-
mentation, as discussed in Sec. VI. We note that hybrid
functionals require a different PC to achieve adequate
accuracy, and that the strategy to treat hypervalent
species is not yet fully automated. Nonetheless, based
on the accuracy demonstrated here, and the potential
computational advantages of using an atom-centered
minimal basis, we believe that this approach merits
further development. We hope to report further progress
in due course.
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APPENDIX A: MORE DETAILS ABOUT THE GRADIENT
OF THE MAB OBJECTIVE FUNCTION

Using the same notations as in Sec. II B, the most general
form of the gradient of the MAB objective function is given
by

∂E
∂∆ZpZq

=

X,Y

∂RXµYν

∂∆ZpZq
GYνXµ, (A1)

where G = SPSRF + FRSPS. With the parameterization of B
by Equations (14) and (15), we have

∂RXµYν

∂∆ZpZq
=

CXµ

Xpδ
X
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Xqδ
X
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ZσYqY j − CYν
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Y
ZσY pY j



−

W
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Wσ


CWσ
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W
ZσWqWl − CWσ

Wqδ
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ZσWpWl

 (σ−1)WlY j(BT) Yν
Y j

−
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BXµ
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CWσ
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 (SR) Yν
Wσ (A2)

and correspondingly the gradient becomes

∂E
∂∆ZpZq

= −2σZpZ j

�(σ−1)BTG(I − RS)C�Z j

Zq

+ 2σZqZ j

�(σ−1)BTG(I − RS)C�Z j

Z p
. (A3)

When ∆ stands for the orbital rotations within the MAB
space, i.e., p = i, q = j, matrix C reduces to B, and the
gradient vanishes because (I − RS)B = 0. On the other hand,

orbital rotations within the complementary space of the MAB
(p = a, q = b) have no effect on the objective function value
either, simply due to the enforced on-atom orthogonality
(σZaZ j = 0). Therefore, the only non-zero block of this
gradient is resulted from the rotations between these two
subspaces. If we set p = i, q = a, only the first term in Eq. (A3)
remains based on the arguments above, which immediately
leads to the gradient represented by Eq. (19).
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APPENDIX B: THE PRECONDITIONED
L-BFGS ALGORITHM

The basic idea of L-BFGS is to construct the approximate
Hessian (inverse Hessian in practice) for the current iteration

with gradients and displacements computed in the most
recent m steps, where m is the user-specified subspace size
(number of “memorized” steps). If we define the gradient and
displacement at kth iteration as gk and sk, and yk = gk+1 − gk,
the kth approximate inverse Hessian can be evaluated as111

Hk =
�
VT

k−1 · · ·V
T
k−m

�
H0

k (Vk−m · · ·Vk−1) + ρk−m
�
VT

k−1 · · ·V
T
k−m+1

�
sk−msT

k−m (Vk−m+1 · · ·Vk−1)
+ ρk−m+1

�
VT

k−1 · · ·V
T
k−m+2

�
sk−m+1sT

k−m+1 (Vk−m+2 · · ·Vk−1) + · · · + ρk−1sk−1sT
k−1, (B1)

where

ρk =
1

yT
ksk

, Vk = I − ρkyksT
k . (B2)

In practice, a “two-loop” algorithm which only requires
evaluating vector-vector products is implemented to compute
Hk acting on gk. H0

k is the preconditioner for the approximate
inverse Hessian. By default, a constant scaling factor is used

for H0
k, which is considered as the unpreconditioned case

here. Once H0
k contains more information about the true

inverse Hessian, the step generated by L-BFGS becomes
closer to a Newton step, which can presumably accelerate the
convergence.

If we still denote G = SPSRF + FRSPS, the Hessian
of the MAB objective function (Eq. (10)) can be formally
represented as follows (only on-block mixings are allowed):

HXiXa,YjYb =
∂2E

∂∆XiXa∂∆YjYb

�����∆=0

= R∆SPSR∆F + R∆∆G
= 2(Pov)XiYb(Fov)YjXa + 2(Fov)XiYb(Pov)YjXa + 2(Poo)XiYj

(Fvv)YbXa + 2(Foo)XiYj
(Pvv)YbXa

− 2(Sov)XiYb(Gov)YjXa − 2(Gov)XiYb(Sov)YjXa + 2(Soo)XiYj
(Gvv)YbXa − 2(Goo)XiYj

(Svv)YbXa, (B3)

where R∆ and R∆∆ stands for first- and second-order
derivatives of R with respect to ∆. The first four terms on
the RHS of Eq. (B3) come from the “R∆R∆” term, while the
rest from the “R∆∆” term. The explicit forms of the involved
matrix elements are

(Poo)XiY j = σXiXk

�
σ−1BTSPSBσ−1�XkYl

σYlY j,

(Pov)XiYa = σXiX j

�
σ−1BTSPS(I − RS)�X j

Yν
VYν

Ya,

(Pvv)XaYb = (VT) Xµ
Xa [(I − SR)SPS(I − RS)]XµYν VYν

Yb,

(B4)

(Foo)XiY j = σXiXk

�
σ−1BTFBσ−1�XkYl

σYlY j,

(Fov)XiYa = σXiX j

�
σ−1BTF(I − RS)�X j

Yν
VYν

Ya,

(Fvv)XaYb = (VT) Xµ
Xa [(I − SR)F(I − RS)]XµYν VYν

Yb,

(B5)

(Goo)XiY j = σXiXk

�
σ−1BTGBσ−1�XkYl

σYlY j,

(Gov)XiYa = σXiX j

�
σ−1BTG(I − RS)�X j

Yν
VYν

Ya,

(Gvv)XaYb = (VT) Xµ
Xa [(I − SR)G(I − RS)]XµYν VYν

Yb,

(B6)

and

(Soo)XiY j = σXiXk(σ−1)XkYlσYlY j,

(Svv)XaYb = (VT) Xµ
Xa [S(I − RS)]XµYνVYν

Yb,

(Sov)XiYa = σXiX j

�(σ−1)BTS
�X j

Yν
VYν

Ya.

(B7)

In practice, we also have σXiX j = δi j since on-block
orthogonality is enforced. More details about the Hessian
derivation can be found in Ref. 139, which carefully derived
the orbital Hessian for SCF-MI (a rather similar optimi-
zation problem).

The preconditioner we apply to the L-BFGS algo-
rithm is the inverted on-diagonal blocks of the Hessian,
i.e., the inverse of HXX for all the different atom
blocks (X). Within the “two-loop” implementation, H0

k
acts on vector v = Vk−mVk−m+1 · · ·Vk−1gk, which can be
divided into contributions from each atom block. Therefore,
the application of the preconditioner is equivalent to
solving the following linear equation on each atom
block:

HXiXa,X jXbuX jXb = vXiXa, (B8)

where u is the preconditioned vector: u = H0
kv. Based on

the property of the Hessian matrix (symmetric positive-
definite), a preconditioned conjugate-gradient (CG) algorithm
is implemented to solve Eq. (B8) iteratively on each atom
block. The implemented preconditioner for CG is actually
the inverse of the on-diagonal part (X = Y ) of the last two
terms in Eq. (B3).
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APPENDIX C: CONSTRUCTION
OF PSEUDO-CANONICALIZED
MOs UPON MAB-SCF SOLUTION

Once MAB-SCF converges, a Fock matrix in the
secondary basis can be built upon the MAB density matrix
projected into the secondary basis,

F = F(P̃), P̃ = BPBT . (C1)

In the current implementation, the PT2 correction is evaluated
based on pseudo-canonicalized occupied and virtual MOs,
which can be obtained by diagonalizing FOO and FVV

separately. In fact, the occupied ones are already available
in this case, since we can simply project the occupied
MOs optimized by MAB-SCF into the secondary basis:
(Co)µi = Bµ

α(Co)αi. Obviously, Co diagonalizes F,

(CT
o ) µ

i Fµν(Co)νj = (CTo ) α
i Fαβ(Co)βj = ϵ iδi j . (C2)

To obtain the eigenvalues and eigenvectors of FVV , we first
form an orthonormal basis that spans the virtual space. If
the full but non-redundant span of the secondary basis is
represented by X (XTSX = I), the demanded vectors can be
generated by projecting out the space spanned by occupied
MOs,

V = (I − P̃S)X. (C3)

The vectors in V can be orthonormalized again by performing
a canonical orthogonalization (diagonalizing VTSV will be
required). Also, after doing this, the linear dependency of
vectors in V will be eliminated and its column dimension
reduces to Nv. We denote the resulting orthonormal basis as
V′. Solving the following standard eigenvalue problem

(V′TFV′)C′v = ϵ vC′v, (C4)

the energies of the pseudo-canonicalized virtual orbitals (ϵa’s
in Eq. (29)) are given by ϵ v, and their coefficients Cv = V′C′v.
The Fock matrix elements coupling between occupied and
virtual pseudo-canonicalized MOs (FOV) can be evaluated as

F(1)
ia = (CTo ) α

i (BT) µ
α Fµν(Cv)νa. (C5)
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