
What Is the Price of Open-Source Software?

The notion that all scientific software should be open-
source and free has been actively promoted in recent

years, mostly from the top down via mandates from funding
agencies1 but occasionally from the bottom up, as exemplified
by a recent Viewpoint in this journal.2 A commonly articulated
rationale is that the results of scientific research funded by
government grants should be free for society and that the
scientific community benefits from free access. The purpose of
this Viewpoint is to examine the consequences of these
opinions.
What Is Scientif ic Sof tware? Modern computational chemistry
software is an extremely complex product based on advanced
scientific ideas (models and theories) and sophisticated
algorithms that transform these ideas from equations into
useful tools. The development of practical software that can be
used by nonexperts to solve contemporary research problems
requires considerable technical effort to produce and maintain
robust, efficient, and validated code. Unlike the development of,
for example, a smart-phone app, where the code base is small3

and a relatively large community can easily write extensions and
add-ons, production of scientific software involves the curation
of millions of lines of source code. The complexity of this code
demands long-term user and developer support to maintain its
integrity and performance while keeping up with new computer
architectures, fixing bugs, and adding features. Recognizing the
importance of these ideas, various funding agencies in the U.S.
have made “sustainable software” a key priority in the
distribution of research support.1 Sustainability is a critical
goal, but one that can be realized in various ways.
Good Sof tware Is Important to Science. Computational
chemistry software is an essential scientific instrument that
facilitates discovery and innovation far beyond the laboratories
in which it is created, an achievement that was recognized by
the 1998 and 2013 Nobel Prizes in Chemistry.4 Focusing on
quantum chemistry software in this Viewpoint, we note that
today any chemist can (with very little training) use numerous
quantum chemistry programs as teaching and research tools
that aid in the design and interpretation of experiments.
A software package should be more than just a tool for end

users, however; it should also be a platform to develop and test
new models and algorithms. Maintaining a code base requires
extensive validation, and given the complexity of modern
computational methods, even testing of “pilot code” or a
“proof-of-principle” implementation requires access to basic
software infrastructure, for example, an integrals library, a self-
consistent field procedure, efficient I/O and memory manage-
ment, tools for manipulating tensors, and so forth. Modularity
is a laudable goal, but in reality, “interoperability” often comes
at the expense of performance. In high-performance codes, the
aforementioned components are tightly interwoven, to the
extent that expert help is often required to modify key
components or to develop nonstandard interfaces to them. As
such, the ability to innovate along either applied or theoretical
lines depends crucially on the quality of the software and the
availability of documentation and expert support.

As examples, consider two widely used electronic structure
programs, Q-CHEM

5 and MOLPRO.6 These codes consist of ∼5.5
and ∼2.5 million lines of source code, respectively, written in
multiple languages and each in continuous development over
several decades. Q-CHEM incorporates scientific advances
reported in more than 300 peer-reviewed scientific publications,
whereas methods implemented for the first time in MOLPRO

have led to 20 high-impact papers that have each been cited
over 300 times. Neither code is static: more than 70 scientists
are actively contributing to MOLPRO, and the Q-CHEM developer
base numbers more than 100. Such agile innovation comes at a
price, however. Significant effort is required to keep the code
robust, efficient, and sound and to provide the documentation
that ensures the usability of new methods and the extensibility
of older ones.
Software from academia is often developed with an emphasis

on ideas rather than implementation, fed by the need for timely
peer-reviewed journal publications that provide ongoing grant
support and future jobs for graduate students. To bring new
ideas to the production level, with software that is accessible to
(and useful for) the broader scientific community, contribu-
tions from expert programmers are required. These technical
tasks usually cannotand generally should notbe conducted
by graduate students or postdocs, who should instead be
focused on science and innovation. To this end, Q-CHEM

employs four scientific programmers. Other quantum chemistry
codes (e.g., MOLPRO,6 TURBOMOLE,7 JAGUAR,8 MOLCAS,9 PQS,10

and ONETEP11) face the same challenges and adopt similar
models to ensure sustainability.
It is important to distinguish these academically led software

ventures from purely commercial endeavors. The large majority
of the code in a package like Q-CHEM is funded by the
government, either through grants to academic groups or, in
some cases, through technology grants to the company itself.
The role of the company programmers is to enable
sustainability through bug fixes, user support, release manage-
ment, and the addition of features that academic developers
either cannot or will not add themselves. Programmers
employed by the company place emphasis on functionality,
robustness, and performance, more so than scientific
innovation. They are directly addressing the “reproducibility
problem”.2 Sales revenue cannot support the entire develop-
ment cost of an academic code, but it contributes critically to its
sustainability. The cost that the customer pays for a code like
Q-CHEM reflects this funding model: it is vastly lower than the
development cost, particularly for academic customers but also
for industry. It primarily reflects the sustainability cost.
Sof tware Is Not Data. In his Viewpoint,2 Gezelter argues that
both software and data should be open, yet it is important not
to conflate the two. Software is not data, and simply because it
is feasible to put software on the Internet does not imply that it
should be posted. Software is a product that contains an
intellectual component (models and algorithms) but owes its
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existence to additional technical efforts. Such efforts include
implementation of minor but useful (or requested) features
that are not publishable in the peer-reviewed literature. This is
not to say that details should be withheld as proprietary
information. Just as models and algorithms should be described
in full detail in scientific publications, so too should
implementation details be specified, along with performance
metrics (timings and scaling data) and benchmarks (energies
and other computed properties). Nevertheless, the software
itself is a product, not a scientific finding, more akin to, say, an
NMR spectrometera sophisticated instrumentthan to the
spectra produced by that instrument.
Consider an analogy from the field of photovoltaics.

Scientific findings concerning the mechanistic details of charge
generation and exciton propagation in a given material are
results that merit discussion in the peer-reviewed literature.
However, creating a new solar panel based on this research
requires significant additional engineering effort, which is most
commonly conducted in an industrial setting. This is a common
mechanism for technology transfer, by means of which society
benefits from academic research. Likewise, new telecommuni-
cation technologies, information storage media, computer
chips, and so forth are products that build uponbut are not
equivalent toscientific findings. Going from a journal article
to a product in one’s home or office requires a significant
investment of resources that is often impossible to achieve in
the absence of a commercial platform. Software is not different.
There Is No Free Sof tware. The creation of scientific software is
a labor-intensive process, and its support and curation even
more so. How do we pay for these labor costs? The answer is
clear in the case of commercial software, where license fees are
used to defray the costs of development and support. In this
model, users buy the software that fits their research needs and
affords them the highest productivity. The decision mechanism
and price-versus-deliverables choices are similar to those faced
when purchasing a computer or other lab equipment. Just like a
new laser system may enable the pursuit of new science,
software that offers a competitive advantage is a sensible
investment of research funds.
Interestingly, Gezelter2 specifically mentions the Quantum

Chemistry Program Exchange (QCPE), an early repository for
open-source software, as having contributed greatly to the
growth of the field. It is therefore telling to note that QCPE was
supported initially by the Air Force Office of Scientific Research
and then by the National Science Foundation before
subsequently becoming a fee-for-software service with paid
employees to do the time-consuming work of testing,
documenting, and distributing the contributed programs.12

Gezelter acknowledges the cost of maintaining scientific
software and suggests alternative models to defray these costs
including selling support, consulting, or an interface, all the
while making the source code available for free.2 These
suggestions strike us as naıv̈e, something akin to giving away
automobiles but charging for the mechanic who services them.
Such a model creates a financial incentive to release a less-than-
stellar product into the public domain, then charge to make it
useful and usable. It is better to release a top-of-the-line product
for a nominal fee.
Is “free” software genuinely free of charge to individual

researchers? Consider software developed in the U.S. national
laboratories. These ventures are supported by full-time
scientific programmers employed specifically for the task, and
the cost to support and develop these products is subtracted

from the pool of research funding available to the rest of the
community. The individual researcher pays for these codes, in a
sense, with his rejected grant proposals in times of lean funding.
In contrast to using one’s own performance metrics to guide
software purchases, within this system, one has no choice in
what one pays for. In other words, “free software” is not free for
you; the only sense in which it is “free” is that you are freed
from making a choice about how to spend your research
money.
Computational chemistry software must balance the needs of

two audiences: users, who gauge their productivity based on the
speed, functionality, and user-friendliness of a given program;
and developers, who may be more concerned with whether the
structure “under the hood” provides an environment that
fosters innovation and ease of implementation. As a
quantitative example, consider that the cost of supporting a
postdoctoral associate (salary plus benefits) is perhaps $4,800/
month. If the use of well-supported commercial software can
save 2 weeks of a postdoc’s time, then this would justify an
expense of ≳$2,000 to purchase a software license. This
amount exceeds the cost of an academic license for many
computational chemistry programs. Given the choice between a
free product and a commercial one, a scientist should make a
decision based on her own needs and her own criteria for doing
innovative research.
What Is “Open Source”? The term “open source” is ubiquitous
but its meaning is ambiguous. Some codes are “free” but are not
open,13 whereas others make the source code available, albeit
without binary executables, so that responsibility for
compilation and installation is left to the user. Insofar as the
use of commercial quantum chemistry software is a mainstay of
modern chemical research and teaching, there exists a broad
consensus that the commercial model offers the stability and
user support that the community desires. Strict coding
guidelines can be enforced within a model where source code
access is limited to qualified developers, and this kind of
stability offers one counterbalance to the “reproducibility
crisis”.2 To the extent that such a crisis exists, it has occurred
in spite of the existence of open-source electronic structure
codes such as GAMESS,14 NWCHEM,15 and CP2K.16

Occasionally the open-source model is touted on the
grounds that one can use the source code to learn about the
underlying algorithms, but this hardly seems relevant if the
methods and algorithms are published in the scientific
literature. Source code itself rarely constitutes enjoyable
reading, and using source code to learn about an algorithm is
a last resort forced by poorly written scientific papers. Better
peer review is a more desirable solution.
A more practical use of openly available source code is to

reuse parts of it in other programs, provided that the terms of
the software license allow this. Often, they do not. Some
ostensibly “open” chemistry codes forbid reuse, or even
redistribution.13,17 Others, such as CP2K,16 use the restrictive
General Public License18 that requires any derivative built on
the original code to be open-source itself. Variation in design
structure from one program to the next also severely hampers
transferability, even if the license terms are amenable.
Access to source code allows developers to introduce their

own innovations, but this is distinct from reuse. To facilitate
innovation by developers, source code needs only to be
available to people who intend to build upon it. This is
commonly accomplished in the framework of “closed-source”
software projects by granting academic groups access to the
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source code for development purposes. Given the large number
of developers for many quantum chemistry codes, this
developer community should not be envisaged as some small,
secluded cabal but rather as a rich, diverse community of
academic scientists.
Let us analyze accessibility using Q-CHEM as a specific

example. This is commercial software whose source code is not
in the public domain because that would eliminate the product
that Q-Chem, Inc., is selling. Consider, however, how many
developers benefit from Q-CHEM as a platform for their own
innovation: this community exceeds 100 scientists from at least
12 countries,19 for whom the code is open. We call this model
open teamware.5 Moreover, any licensed user can obtain access
to the source code upon signing a nondisclosure agreement.
Given the size of the user base, this is likely a significantly larger
group than the number of people who care to look at many
existing open-source packages. Does an “open-source” code
that serves just a few people offer more benefit to the scientific
community than a “closed-source” code that fosters a
community of 100+ active developers and thousands of
users? What would the impact be on computational chemistry
of destroying other teamware projects such as MOLPRO,6

TURBOMOLE,7 JAGUAR,8 MOLCAS,9 PQS,10 or ONETEP,11 in the
interest of satisfying some “open-source” mandate?
Practical Consequences of an Open-Source Mandate. One of the
pillars of science funding in the U.S. and elsewhere is a merit-
based funding model that distributes resources based on
intellectual merit, productivity, and impact. In the long run,
more-competitive ideas are selected over less-competitive ones,
and investigators are rewarded for a track record of
productivity. Research that is judged to have higher impact is
ranked as more meritorious and more deserving of support.
This model has proven successful in fostering innovation and
discovery, so it is worth considering what consequences a
blanket requirement that software be free and open-source
might engender.
Such a requirement would, in our view, detract from the

merit-based review process. When evaluating grant proposals
that involve software development, the questions to be asked
should be:

1. What will be the quality of the software in terms of the
new science that it enables, either on the applications
side or on the development side?

2. How will the software foster productivity? For example,
how computationally efficient is it for a given task? How
usable will the software be, and how quickly will other
scientists be able to learn to use it for their own research?

A rigid, mindless focus on an open-source mantra is a
distraction from these more important criteria. It can even be
an excuse to ignore them, and creates an uneven playing field in
which developers who prefer to work with a commercial
platform are put at a disadvantage and potentially forced to
adopt less efficient practices.
Although Gezelter2 suggests that online code repositories

would help young researchers to showcase their work, an open-
source requirement actually puts young researchers at a
particular disadvantage. The demands of tenure and promotion
place special burdens to bring ideas before the community
rapidly and also to secure funding quickly. Open-source
requirements potentially force a scientist to choose between
pursuing a funding opportunity versus implementing an idea in
the quickest, most efficient, and highest-impact way. A strictly

open-source environment may furthermore disincentivize
young researchers to make new code available right away, lest
their ability to publish papers be short-circuited by a more
senior researcher with an army of postdocs poised to take
advantage of any new code. This would contribute directly to
the scenario that Gezelter wishes to avoid, namely, one where
students leave behind “orphaned” code that will never be
incorporated into mainstream, production-level software.
Viewed in these terms, an open-source mandate degrades,
rather than enhances, cyberinfrastructure.
How should the impact of software be measured? Scientific

publications are a more sound metric than either the price of a
product or whether its source code is available in the public
domain. Software is meant to serve scientific research, in the
same way that any other scientific instrument is intended. As
such, the question should not be whether software is free or
open source, but rather, what new science can be accomplished
with it? Let us not allow political rhetoric to dictate how we are
to do science. Let different ideas and different models
(including open source!) compete freely and flourish, and let
the community focus instead on the most important metric of
all: what is good for scientific discovery.
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