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ABSTRACT: The density derived electrostatic and chemical (DDEC/c3) method
is implemented into the ONETEP program to compute net atomic charges (NACs),
as well as higher-order atomic multipole moments, of molecules, dense solids,
nanoclusters, liquids, and biomolecules using linear-scaling density functional
theory (DFT) in a distributed memory parallel computing environment. For a
>1000 atom model of the oxygenated myoglobin protein, the DDEC/c3 net charge
of the adsorbed oxygen molecule is approximately −1e (in agreement with the
Weiss model) using a dynamical mean field theory treatment of the iron atom, but much smaller in magnitude when using the
generalized gradient approximation. For GaAs semiconducting nanorods, the system dipole moment using the DDEC/c3 NACs
is about 5% higher in magnitude than the dipole computed directly from the quantum mechanical electron density distribution,
and the DDEC/c3 NACs reproduce the electrostatic potential to within approximately 0.1 V on the nanorod’s solvent-accessible
surface. As examples of conducting materials, we study (i) a 55-atom Pt cluster with an adsorbed CO molecule and (ii) the dense
solids Mo2C and Pd3V. Our results for solid Mo2C and Pd3V confirm the necessity of a constraint enforcing exponentially
decaying electron density in the tails of buried atoms.

1. INTRODUCTION

Atoms-in-molecule (AIM) partitioning of the quantum
mechanical electron density is important both for under-
standing the chemical nature of materials and for developing
force fields for use in classical molecular dynamics and Monte
Carlo simulations.1 Because there is some flexibility in how to
partition electron density among the atoms in a material, the
key criterion is to maximize usefulness. In this regard, the AIM
densities should: (a) produce net atomic charges (NACs) that
are chemically meaningful by being compatible with electro-
negativity scales, (b) yield an efficiently converging atom-
centered multipole expansion of the electrostatic potential
surrounding the material, which is important for constructing
force fields for atomistic simulations, (c) be relatively
insensitive to different thermodynamically accessible molecular
conformations, which is needed to construct transferable
flexible force fields, (d) be inexpensive to compute, and (e)
be applicable to a wide range of materials (such as molecules,
solids, and so on). Regarding point c, the electron distribution
is dependent on the molecule’s environment and geometry, and
thus polarizable force fields may be required to further improve
transferability of the charge model or multipolar expansion.2

Once an atom’s electron density distribution nA(r) in a material
has been found, the NAC of atom A, QA, is then obtained as

= −Q z NA A A (1)

where NA is the number of electrons assigned to atom A, and zA
is its effective nuclear charge.
At the most basic level, one can ask whether atoms should be

overlapping or nonoverlapping. The answer to this question
depends in part on whether the NACs are intended for use in
constructing force fields for classical atomistic simulations. By
Gauss’ Law of Electrostatics, the NACs will most accurately
reproduce V(r) surrounding the material if {nA(r)} is close to
spherically symmetric, and this criterion can only be fulfilled
using overlapping atoms. Specifically, Gauss’ Law of Electro-
statics states that the integral of the electric field over a closed
surface is proportional to the enclosed charge. Therefore, by
symmetry an enclosed spherically symmetric charge density
distribution yields the same electrostatic potential outside the
bounding surface as an equivalent point charge placed at its
center. Thus, when assigning nearly spherical atomic electron
density distributions, the electrostatic potential surrounding the
material can be approximated by an atom-centered point charge
model, and the atomic multipole moments will be small.
Without any loss of generality, nA(r) can be defined in terms

of a weighting factor, wA(r) ≥ 0, such that
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where n(r) is the system’s electron density at a position r, and
the sum in the denominator of eq 2 runs over all atoms in the
unit cell plus their images along any directions that are periodic.
Note that eq 2 guarantees that the {nA(r)} sum to n(r) at every
position r. Thus, the task for defining {nA(r)} has been
transformed into the task of defining {wA(r)}. Various
definitions for {wA(r)} have been proposed, leading to different
AIM methods. However, one feature that AIM methods have in
common is that they yield global minima of the optimization
functional Ω and stationary points of the path action S
proposed by Manz:

∮∑ ξΩ = P r r( ( )) d
A

A
3

(3)

ξ =
∑n w

w n
r

r r

r r
( )

( ) ( )

( ) ( )
k

A
A ,B B

A (4)

ξ ξ ξ ξ= − +P( ) ln( ) 1 (5)

∮∑ ξ δ=S nr r rd ln( ( )) ( ) d
A

A A
3

(6)

where the action S = ∫ dS, takes a path in {nA(r)} optimization
space as its argument and has a real number as its result.3

For AIM methods with nonoverlapping atoms, such as
Bader’s quantum chemical topology, wA(r) ∈ {0,1}.4 For AIM
methods with overlapping atoms, wA(r) is chosen to be a
continuous function. A key observation is that if ∑k,BwB(r) is
made to resemble n(r), then nA(r) will resemble wA(r). As
described above, {nA(r)} should be made close to spherically
symmetric to yield a rapidly converging atom-centered
multipole expansion that reproduces V(r) surrounding the
material. Hence, it is reasonable to define {wA(r)} as a set of
spherically symmetric functions, {wA(rA)}, where rA = |r − RA|
and RA is the position of the nucleus of atom A.
In section 2.1, we summarize the advantages and limitations

of various definitions of {wA(rA)}. In particular, we describe the
basic principles of density derived electrostatic and chemical
(DDEC) atomic population analysis. The main idea of the
DDEC method is to simultaneously optimize each weighting
factor wA(rA) to resemble (a) the spherical average of nA(r) in
order to yield a rapidly converging atom-centered multipole
expansion that reproduces V(r) surrounding the material and
(b) the density of a reference ion of the same element having
the same number of electrons, NA, in order to make the
assigned atomic charges chemically meaningful with good
conformational transferability.
The DDEC method has been previously used to construct

force fields for proteins,5 metal−organic frameworks,1,6−12

zeolites,13−15 and ionic liquids16 and to study catalysts and
other advanced materials.17−25 The method has gone through
several generations of improvements, in which the third
generation (named DDEC/c3) combines and extends some
features of earlier methodologies to produce accurate results
across a wider range of material types.3,26 In a previous article,5

some of us programmed a second generation variant, which we
here name the DDEC/cc2 method, into the ONETEP density
functional theory (DFT) program.27 In this article, we
implement the DDEC/c3 method into the ONETEP program
to achieve the following improvements relative to the DDEC/
cc2 method: (a) all-electron density partitioning, (b) use of an
improved precomputed reference density library, and (c)

enforcement of exponential decay constraints to prevent buried
atoms from becoming too diffuse. These improvements are
especially important for dense solids containing short bond
lengths, such as the Mo2C and Pd3V solids that are studied in
section 4.

ONETEP is a linear-scaling DFT program that uses a
distributed memory parallel computing environment.28,29

ONETEP combines high basis set accuracy, comparable to that
of plane-wave DFT methods, with a computational cost that
scales linearly with the number of atoms in the system, thus
allowing accurate DFT calculations to be performed on systems
comprising many thousands of atoms.30−34 By implementing
the DDEC/c3 method into ONETEP, we take advantage of
ONETEP’s distributed memory model to achieve parallelization
over multiple compute nodes and a large number of processors.
This facilitates rapid charge analysis on a much larger scale than
was previously possible and allows us to perform chemical
analysis and, potentially, force field design for biomolecules,
nanoclusters, liquids, and other interesting materials.
Although most of our analysis in this paper will concentrate

on the NACs that are derived from the DDEC/c3 electron
density partitioning, we emphasize that there are many well-
documented cases where atom-centered point charges inad-
equately describe the complexity of the quantum mechanical
V(r).35 For example, in the hollow single-walled boron-nitride
nanotube studied in refs 26 and 3, the electrostatic potential
inside the nanotube is approximately 0.6 volts higher than that
outside the nanotube. Because an atom-centered point charge
model necessarily yields equal electrostatic potentials inside and
outside the nanotube, the electrostatic potential of such a
system cannot be described by any atom-centered point charge
model. For this reason, the DDEC method uses an atom-
centered multipole expansion to represent the electrostatic
potential. For the boron-nitride nanotube, the root-mean-
square error (RMSE) in the electrostatic potential dropped
from 8.81 kcal/mol (DDEC/c3 NACs only) to 2.40 kcal/mol
(DDEC/c3 NACs plus atomic dipoles).3 This clearly illustrates
the importance of including atomic multipoles when construct-
ing force-fields for some materials, and in section 5.2 of this
paper we will describe a further case where atomic dipoles
cannot be neglected.
The remainder of this article is organized as follows. Section

2.1 summarizes the DDEC/c3 method and its relationship to
earlier AIM charge partitioning schemes. Section 2.2 describes
implementation of the DDEC/c3 method into the ONETEP

program. Section 3 summarizes computational parameters.
Section 4 validates the computational approach through
comparisons to various benchmark calculations. Section 5
applies the charge analysis method to typical problems in
nanomaterials and biology, namely, a 55-atom Pt cluster with
an adsorbed CO molecule, GaAs polar nanorods, and an
oxygenated myoglobin molecule comprising more than 1000
atoms.

2. THEORY
2.1. Density Derived Electrostatic and Chemical

Charges. The DDEC method3,26 is a density-based AIM
charge partitioning scheme that combines the iterative
Hirshfeld36 (IH) and iterated stockholder atoms37 (ISA)
methods. Both IH and ISA schemes in turn originate from
the Hirshfeld charge partitioning method.38 In the original
Hirshfeld formulation, for each atom A, the electron density
n(r) is divided into overlapping atomic densities nA(r):
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where nA
0(rA) is a spherically symmetric reference atomic

density, whose sum over all atoms in the unit cell, plus their
images along any periodic directions, is termed the
promolecular density. Nalewajski and Parr showed that this
form of stockholder partitioning minimizes the distance FAIM

between the real and promolecular density in an information-
theoretic sense:39
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where the sum is performed over all atoms A in the unit cell
and ∮ d3r denotes volume integration over all space. It has since
been shown that the Hirshfeld partioning can also be obtained
via minimization of the Hellinger−Bhattacharya distance
metric.40 In the original Hirshfeld method, neutral gas-phase
atomic densities were typically chosen as the atomic weighting
factors, leading to assigned atomic populations that were often
too close to zero.3,26,36,41 To address this problem, Bultinck et
al.36 proposed an iterative Hirshfeld method in which the
partitioned atomic densities for each new iteration, nA

i+1(r), are
computed as
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where wA
i (rA) is the atomic weighting factor that is calculated

from the partitioned atomic density nA
i (r) of the previous

iteration i. In the IH scheme, the spherically symmetric
weighting factors wA

i (rA) = wA
IH,i(rA) are constructed via linear

interpolation between reference densities nA
0(τ, rA) of free

atoms or ions with the next lowest integer (τ = lint(NA
i )) and

the next highest integer (τ + 1) number of electrons:
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in order to obtain a free reference density for a hypothetical ion
comprising NA

i electrons. The procedure is iterated until the
changes in the IH NACs converge below a specified threshold.
The IH NACs have been shown to reproduce ab initio
electrostatic properties of small molecules and to show good
conformational transferability.3,42,43 However, using isolated
reference anions that are much more diffuse than in condensed
materials has been shown to lead to chemically unreasonable
NACs in certain situations.26,44,45

The iterated stockholder atoms (ISA) method37 takes the
spherical average of nA

i (r) as the weighting factor wA
i (rA) =

wA
ISA,i(rA) that enters into eq 9:
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where ⟨...⟩A denotes spherical averaging about the center of
atom A. The averaging is performed on a set of discrete radial
shells up to a predefined maximum radius. The ISA scheme
produces a better fit to the ab initio electrostatic potential than
the IH method,5,26 which is due to the spherical-averaging
procedure used to generate the atomic weighting factors.
However, the ISA electron density distributions are not

constrained to decay like those of real atoms, which can lead
to inaccurate and poorly transferable NACs in systems with
buried atoms.3,5,26,46

In the original formulation of the DDEC scheme by Manz
and Sholl,3,26 the IH and ISA methods are mixed via
minimization of a combined information entropy functional
(eq 8):

χ χ= + −F F F(1 )DDEC IH ISA
(12)

where FIH/ISA are constructed with IH/ISA reference densities
and χ is an adjustable mixing parameter. Minimizing the partial
derivative of eq 12 with respect to nA(r) leads to the following
partitioning:
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where wA
IH/ISA,i(rA) are the spherically symmetric weighting

factors given by eqs 10 and 11, and the label c2 denotes the
orginal DDEC/c2 scheme of Manz and Sholl.26 The DDEC/c2
scheme allows a fraction of FIH to contribute toward curvature
in regions that otherwise have shallow optimization landscapes,
for example for buried atoms, thus alleviating the slow
convergence of the ISA method while retaining the low-order
multipoles possessed by the converged {nA(r)}.
In the original DDEC/c2 scheme,26 the IH atomic reference

densities nA
0(τ,rA) (eq 10) are generated from DFT ground state

calculations performed in the presence of a charge
compensation sphere. The reason for using compensated
densities, instead of free ionic states as in the original IH
scheme, is to mimic the dielectric screening experienced by an
ion embedded within a condensed material, whereby its density
profile is modified by the effective dielectric constant of the
material. The charge compensation sphere expands (contracts)
the reference electron density of cations (anions) and also
ensures stability of certain anionic species, such as O2−, whose
outer electrons would otherwise be unbound. This combined
charge partitioning and reference density generation scheme,
called DDEC/c2, has been shown to perform well for a variety
of systems, ranging from periodic bulk crystals and slabs to
isolated molecules, in terms of producing chemically mean-
ingful atomic charges that reproduce the electrostatic potential
of the system.26

Despite its successes, for certain compacted materials with
short bond lengths and atoms with diffuse electron densities,
the DDEC/c2 method has been observed to converge slowly to
unrealistic NACs,3 even with the additional IH weighting that is
introduced to counter the shallow charge optimization
landscape of the ISA method. For example, charge partitioning
in crystalline Pd3V yields an unrealistic charge of −0.98e on the
more electropositive V, and runaway charges exceeding −6e
were observed for carbon in crystalline Mo2C.

3 These issues
stem from the excessive overlap between diffuse atoms due to
their short bond lengths and are addressed in the recently
published DDEC/c3 scheme.3 Here, we provide a short
summary of the additional constraints that are incorporated
into the DDEC/c3 method.
First, the c3 reference densities nA

c3,0(τ, rA) are derived from
the c2 reference densities by enforcing the following three
constraints:

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500766v | J. Chem. Theory Comput. 2014, 10, 5377−53905379



τ τ τ∂
∂

≤
∂

∂
≥

∂
∂ ∂

≤
n r

r
n r

N
n r

r N
( , )

0,
( , )

0,
( , )

0
c c c
A

3,0
A

A

A
3,0

A

A

2
A

3,0
A

A A
(15)

In practice, all-electron c2 reference densities are already
monotonically decaying with respect to rA, leaving only two
remaining constraints to be enforced for each rA, which is
performed as follows. The neutral reference density, nA

c3,0(τ =
zA,rA), is set equal to nA

c3,0(τ = zA,rA) and remains unchanged.
Next, for the ±1 ions, the reference densities nA

c3,0(τ = zA ±
1,rA) are adjusted by subtracting density from the +1 and
adding density to the −1 ion, such that, with respect to the
neutral species:
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The density of each adjusted atomic reference density is then
normalized such that

∫ π τ τ=
∞

r n r r4 ( , ) dc

0
A
2

A
3,0

A A (17)

These two steps (eqs 16 and 17) are iterated until the density
profiles nA

c3,0(τ = zA ± 1, rA) converge. The entire procedure is
then repeated for the ±2 ionic species, starting from the
converged nA

c3,0(τ = zA ± 1, rA), and continues until the density
profiles of all relevant ionic species have been obtained.
Second, the IH weighting factor wA

IH,i(rA) that enters into eq
14 for every iteration is replaced by a conditioned reference
density YA

avg,i(rA), which is computed as the spherical average of
nA
IH,i(r):
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where γ is the DDEC/c3 mixing parameter. This modification
ensures that the sum of (initial) DDEC weighting factors
{σA

i (rA)} remains consistently close to the real density n(r), as
the density profile of YA

avg,i(rA) is derived from the partitioning
of n(r) itself and not merely an interpolation between two
reference densities, and further enhances the curvature of the
charge optimization landscape.3 In addition, this conditioning
process yields an optimum value of γ = 3/14, which is
independent of the system being studied, and has been shown
to result in a good balance between minimizing the atomic
multipoles of the partitioned atomic densities and maximizing
chemical accuracy.3,5

Third, the DDEC/c3 method incorporates additional
constraints to enforce exponential decay of the atomic densities
with increasing distance from each atomic center. These
constraints have the greatest effect on the tail regions, which
can become deeply buried in the partitioned atomic densities of
neighboring atoms in nonporous systems:
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where rA > rA
buried defines a buried region and tA is an effective

decay exponent, which is constrained to prevent a buried tail
from becoming too diffuse. Meanwhile, wc3(r) = ∑k,BwB

c3(rB),

with wA
c3(rA) being the new DDEC/c3 weighting factors used to

partition the atomic density. Equation 20 implies a constraint of
the form
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In the limit of nA(rA) → n(r), however, wA
c3(r) should only be

constrained to decay monotonically, and the exponential
constraint should not be applied. A suitable function ηA(rA)
that satisfies both of these conditions is given by
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where Yavg(r) = ∑k,BYB
avg(rB). The form of eq 22, with b = 1.75

Bohr−1, has been shown to be optimal in ensuring good
transferrability of the atomic charge distributions.3

In calculations using frozen core electrons, the total number
of electrons assigned to a particular atom must be at least as
large as the number of core electrons assigned to that atom:

= − ≥N N N 0A
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A A
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(24)

where NA
val, NA, and NA

core are the number of valence, total, and
core electrons assigned to atom A, respectively. Equation 24 is
enforced by expressing wA

c3(rA) in terms of an auxiliary radial
function GA(rA):
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λA serves to rescale GA(rA) by a constant factor whenever
∮ ((GA(rA))/(w

c3(r)))n(r) d3r < NA
core), in order to prevent the

total integrated partitioned atomic density NA from being less
than NA

core. GA(rA) is constrained to be normalized with respect
to σA(rA):
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The function GA(rA) is obtained as a weighted least-squares
minimization with respect to σA(rA), by extremizing the
functional:3
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The second and third terms of eq 28 enforce the constraints in
eqs 21 and 27, respectively, with ΓA(rA) and ΦA being their
associated Lagrange multipliers. Minimization of eq 28 leads to
an expression for GA(rA) in terms of σA(rA):
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In practice, an integration strategy is required to implement
the above equations. Possible integration strategies include
overlapping atom-centered grids,44,47 nonoverlapping atom-
centered grids,48 and uniform grids with valence-core
separation.3 The integration strategy affects the computational
cost and precision without changing the underlying definition
of the charge partitioning method. In this work, we use uniform
grids with valence-core separation, because the ONETEP program
already generates and uses the valence electron density on a
uniformly spaced Cartesian grid. However, the cusp in n(r)
close to the nucleus of heavy atoms in all-electron calculations
makes integration of the core density inaccurate, unless an
extremely fine grid is used. For an all-electron calculation, the
partitioned atomic densities are therefore separated into valence
and core contributions: nA

val (r) = nA (r) − nA
core (r).26 The ISA

scheme is used to partition the core density ncore(r) = n(r) −
nval(r) into nA

core(rA), while the DDEC scheme is used to
partition the total density n(r). Note that the constraint in eq
21 is also applied to the updated core ISA weighting factor
wA
ISA,core(rA) at every iteration, with ηA(rA) = bcore = 2.0 Bohr−1.49

NACs are then obtained by inserting NA = NA
val + NA

core into eq
1, where NA

val is the volume integral of nA
val(r) and NA

core is the
analytic value based on chemical knowledge and the nature of
the initial valence-core separation of n(r). This ensures that the
potentially inaccurate representation of ncore(r) and nA

core(r)
does not affect the accuracy of the partitioned NACs.
2.2. DDEC/c3 Implementation in ONETEP. ONETEP

27 is a
linear-scaling DFT package which is based on a reformulation
of conventional Kohn−Sham DFT:

∑ρ φ φ′ = * ′
α β

α
αβ

βKr r r r( , ) ( ) ( )
, (30)

where {φα(r)} are a minimal set of spatially localized
nonorthogonal generalized Wannier functions (NGWFs),50

ρ(r, r′) is the single-particle density matrix, and Kαβ is a
representation of the single-particle density matrix in the
biorthogonal duals of the NGWFs. ONETEP achieves linear-
scaling by enforcing strict localization of the NGWFs and by
optimizing the density kernel and NGWFs with further
localization constraints. The in situ optimization of the
NGWFs allows a small number of orbitals to be used while
maintaining accuracy comparable to plane-wave DFT codes.
The NGWFs are themselves written in a basis of localized
periodic cardinal sine (psinc) functions.51 Systematic improve-
ment in the accuracy of the calculation is achieved through
reduction of the psinc grid spacing, which is analogous to the
convergence of the kinetic energy cutoff in traditional plane-
wave DFT codes. The NGWFs are initialized using an in-built
pseudoatomic solver, which self-consistently solves the Kohn−
Sham equations for isolated atoms with spherical confinement
constraints.52 Recently, a reformulation of ensemble DFT,53

written in terms of NGWFs, has been implemented in
ONETEP,54 which allows calculations on metallic systems
comprising thousands of atoms.
The ONETEP program is parallelized using a distributed

memory model based on the MPI library, as described

previously.28,29 Recently, the code has been extended to
support hybrid MPI/OpenMP parallelism, which allows it to
take advantage of state-of-the-art high performance computing
architectures with hundreds of thousands of cores, for example,
using shared memory within a node and distributed memory
between nodes.55 By integrating the DDEC/c3 method into the
ONETEP code, it allows both the DFT calculation and the AIM
analysis to be applied to much larger systems than has
previously been possible, because the size of the system is no
longer limited by the amount of memory residing on a single
compute node. This approach also avoids the need to compile
and run separate programs and provides the opportunity to
compute AIM properties, such as atomic volumes, and use
them later in the DFT calculation.56,57

In a previous paper,5 we have implemented within ONETEP a
charge derivation scheme based largely on the DDEC/c2
method.26 IH reference densities were generated internally at
run time using the pseudoatomic solver and the same exchange-
correlation functional and pseudopotentials as the full DFT
calculation. The resulting reference densities were conditioned
to the material of interest using the approach described in eq
18, and the optimal reference density weighting of 3/14 was
used.3 Henceforth, we refer to this implementation as DDEC/
cc2 (“conditioned c2”) to distinguish it from the DDEC/c2 and
DDEC/c3 methods of Manz and Sholl. The DDEC/cc2
scheme was aimed at deriving transferable charges for use in
flexible biomolecular force fields. We demonstrated on a
benchmark set of 25 small, organic molecules that the DDEC/
cc2 scheme gives excellent agreement with the DDEC/c3
scheme as implemented in the CHARGEMOL code.5,58

Despite the success of the DDEC/cc2 scheme in describing
organic molecules, it does lack several features of the DDEC/c3
scheme that we have outlined in the previous sections, and
therefore, as we will show later, it fails to satisfactorily describe
NACs in dense materials with short bond lengths and diffuse
atoms. To overcome these limitations, we have now
implemented the full DDEC/c3 method in ONETEP. Namely,
(a) constraints enforcing exponential decay of the atomic
densities, (b) improvements to the c2 reference density profiles
enforcing eq 15, and (c) all-electron density partitioning have
been added. The DDEC/c3 constraint of eq 15 requires the
initial reference densities to decay monotonically with
increasing distance from the atomic center, a property not
obeyed by valence (pseudo)densities derived from the norm-
conserving pseudopotentials that are typically used in ONETEP.
Meanwhile the generation of reference electron densities for f
block ions using the PBE exchange-correlation functional and
the pseudoatomic solver can fail to converge in certain cases.
Therefore, in what follows, we employ the c2 reference density
library supplied with the CHARGEMOL package.58 These reference
densities have been computed with the conductor-like
polarizable continuum model in Gaussian 0959 using a universal
Gaussian basis set with relativistic corrections and are available
for all elements in the periodic table up to atomic number
109.26 The reference densities are modified in ONETEP, as
described in eqs 16 and 17, to obey eq 15. Since the reference
densities are now all-electron, we follow the CHARGEMOL scheme
of treating systems with valence-only densities, which is to
augment the latter with a set of atom-centered core densities.
These core reference densities are taken to be the summed
density of the corresponding Kohn−Sham DFT (core) orbitals
of the neutral reference ion, nA

c2(zA, rA). For example, a Ga atom
with 18 core electrons would have a core reference density
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including the summed 1s22s22p63s23p6 orbital densities of the
neutral Ga reference atom. In practice, these core reference
densities are also supplied by the CHARGEMOL package.58 Since
our DDEC treatment is now effectively all-electron, the
valence-core separation scheme with core correction as
described in section 2.1 is employed.
A single DFT calculation is performed on the system to

obtain the ground-state electronic density, which is then
processed to extract the DDEC NACs. The first step of the new
DDEC/c3 implementation involves core charge derivation by
using the valence-core separation scheme in order to separate

the core and valence densities, with the former fitted using the
standard ISA scheme (eqs 9 and 11) and subject to the 2.0
Bohr−1 exponential decay constraint. Next, the full DDEC/c3
procedure is performed on the total electronic density. In the
first charge cycle, the radial Hirshfeld reference densities are
initialized as neutral atomic densities. The implementation of
the procedure described in section 2.1 for each DDEC/c3
charge cycle is summarized in Figure 1. Parallelism is
implemented over groups of atoms local to each node,
following the MPI parallelization strategy of the code for
atoms.28 At the start of each cycle, the promolecular weighting

Figure 1. Outline of the DDEC/c3 implementation in ONETEP. One DDEC charge cycle involves steps A → E. Blue boxes indicate computation that
is performed in parallel with results stored separately on each node. Red boxes indicate global quantities which require node communication and
whose results are stored in a distributed fashion across all nodes. In step A (Deposit), the updated weighting factors from the previous iteration for
each atom distributed over all nodes are deposited onto their respective promolecular density grids, which are stored in distributed memory. In step
B (Extract), for each atom, a small atom-local sample of the distributed promolecular density sufficient to encompass the largest spherical shell is
extracted to the corresponding node in order to compute the weighting factors.
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factors, of the form n(r) = ∑k,BnB(rB), are updated by
depositing the relevant radial densities from each node into
the distributed density grids (step A). As with previous DDEC
implementations,3,5,26 radial densities are stored on atom
centered sets of equally spaced radial shells up to a predefined
maximum cutoff radius rmax. Meanwhile, the distributed
densities are stored on Cartesian grids of the same spacing as
that used by the DFT calculation. The Cartesian density is
stored as 2D simulation slabs divided among the available
nodes. This method ensures that computational cost scales
linearly with the number of atoms for each DDEC iteration,
because the promolecular densities and weighting factors for
each point need only be computed and stored once, to be
extracted when required, and the number of Cartesian grid
points to be processed per atom is independent of system size.
Next, each node iterates over the groups of atoms {A} local

to them. For each atom A, wc3(r), Yavg(r), and wIH(r) are
extracted from the distributed storage into Cartesian grid boxes
of size commensurate with the largest DDEC radial shell rmax,
which are local to individual nodes (step B). The valence
iterator procedure (step C) updates the radial densities and
weighting factors wA

ISA(rA), wA
IH(rA), YA

avg(rA), and wA
c3(rA) as

follows. First, the partitioned atomic density nA
i+1(rA) is updated

using eq 9, and the atomic valence population NA
val,i+1 is also

calculated. The ISA weighting factor, wA
ISA,i+1(rA) is then derived

as the spherical average of the partitioned atomic density as in
eq 11. In practice, this is calculated directly from eq 9 by
reducing each vector r on the right-hand side into rA on the left-
hand side. This direct spherical averaging is employed for all
radial densities. Next, the conditioned reference density
YA
avg,i+1(rA) is calculated using eq 18. The quantities

⟨Y±(1/2)(r)⟩A, which are required in eq 23, are also computed
during this step. The initial DDEC weighting factor σA

i+1(rA) is
then computed using eq 19, followed by density reshaping
(minimization of eq 28) in order to transform σA

i+1(rA) into the
final DDEC weighting factor wA

c3,i+1(rA). Last, the IH reference
weighting wA

IH,i+1(rA) is updated using eq 10 with the new
atomic population QA

i+1 as computed earlier. Except for the
distributed memory parallelization, this iterative procedure is
analogous to that described by Manz and Sholl.3

Computational efficiency is achieved because the size of the
Cartesian grid for each atom is much smaller than the global
molecular density and independent of system size; thus, the
valence iterator needs to loop over a number of Cartesian grid
points that is proportational to the number of atoms. The
distributed nature of the molecular density storage allows us to
access large-scale systems without being hindered by memory
constraints inherent in the original CHARGEMOL package, where
density arrays are stored on a single node with OpenMP shared
memory parallelism implemented via multithreaded loops over
Cartesian grid points.58

Density reshaping of σA(rA) → wA
c3(rA) (eq 25) is performed

at the end of each valence iterator procedure using the same
computational procedure as CHARGEMOL,3 by iteratively
minimizing GA(rA) (eq 28) with an initial guess of GA

0(rA) =
σA(rA). For each reshaping iteration j, the exponential decay
constraint (eq 21) is enforced numerically for each consecutive
shell as

= − Δ η− ΔG r G r G r r( ) min[ ( ), ( ) e ]j j j r r
A A A A A A A

( )A A A (31)
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and this process is repeated until ΔA falls below a particular
threshold for every atom A. The value of λA is then computed
via eq 74 of reference 3. Two DDEC charge cycles are required
for a complete update of the Cartesian and spherically averaged
radial densities. Therefore, in practice, no density reshaping is
applied for the first three DDEC cycles, where λA is set to 1 and
GA(rA) = σA(rA).

3. COMPUTATIONAL PARAMETERS
ONETEP calculations were performed using the PBE exchange-
correlation functional.60 Interactions between electrons and
nuclei were described by norm-conserving pseudopotentials.61

NGWFs were initialized as orbitals obtained from solving the
Kohn−Sham equation for isolated atoms.52 One NGWF was
used for H; nine for V, Fe, Mo, Pd and Pt (initialized as five d,
one s, and three p orbitals); and four for all other elements used
in the current study. The NGWFs were expanded as a psinc
basis set51 with an equivalent plane-wave cutoff energy of at
least 800 eV, which means that the electron density is stored on
a Cartesian grid of spacing 0.25 Bohr or smaller. The
localization radii of the NGWFs were 9.0 Bohr or higher.
Except for bulk supercells, where periodicity was required,
calculations were performed with the cutoff Coulomb approach
to avoid electrostatic interactions between molecules and their
periodic images.62 The ground states of the metallic systems
Pt55CO, Mo2C, and Pd3V were found via self-consistent
minimization of the Helmholtz free energy.53,54 For these
calculations, an electronic smearing of kBT = 0.1 eV was
employed. k-point sampling was performed at the Γ-point only,
though the cell sizes were large enough that the product of the
number of k-points and the unit cell volume always exceeded
around 4000 Å3. The only spin-polarized calculation was the
DFT calculation of the myoglobin (Mb) complex with oxygen,
which was treated as an open-shell singlet as described
previously.63

DDEC/c3 analysis was performed as described in the
previous section. For all calculations, a uniformly spaced radial
grid of 100 shells with rmax = 5 Å corresponding to a constant
shell spacing of ΔrA = 0.05 Å was used to store the spherically
averaged radial densities, while γ is set to the optimal value of
3/14.3 The DDEC NACs were considered converged when the
valence population and partitioned atomic densities, for each
atom and rA, converged below 1 × 10−5 e and 1 × 10−5 e/Bohr3,
respectively, for four consecutive iterations. For comparison,
DDEC/cc2 calculations have been performed for selected
systems, and in these cases, the methods are as described
previously.5 The root-mean-square error (RMSE) in the
Coulombic potential of the DDEC NACs, compared with
that of the underlying QM calculation, is given by

∑= −
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where the sum is performed over all points i lying within 1.4
and 2.0 times the van der Waals radii of the nuclei,6 on the
same grid used to calculate the DFT electron density. The
potentials were displaced by the averaged difference over the
included grid points to remove the arbitrary vacuum level of the
DFT potential. Another measure of the accuracy of the
electrostatic properties of the DDEC NACs, is the relative
RMSE (RRMSE), which is the ratio of the RMSE of the charge
model to the RMSE of a null charge model in which all atomic
charges are set to zero.
In order to test the robustness of linear-scaling DFT

calculations with ONETEP, and the dependence of the results
on k-point sampling, a small number of calculations were
repeated using the plane-wave DFT code CASTEP. The CASTEP

simulations used a 1000 eV plane-wave cutoff energy, the same
pseudopotentials as the ONETEP calculations, and an electronic
smearing of kBT = 0.1 eV. A 3 × 3 × 3 k-point grid was used,
though the convergence with respect to the number of k-points
was validated as described in the text. DDEC charge analysis of
the electron density was performed using the CHARGEMOL code
in these cases.58

4. VALIDATION
The implementation of the DDEC/c3 methodology in ONETEP

is aimed at large scale chemical analysis, and so, we begin by
verifying that the implementation is linear-scaling with the
number of atoms in the system. Figure 2 shows the

computational postprocessing time for DDEC/cc2 and
DDEC/c3 charge analyses, using periodic boxes of bulk water
of increasing size, up to around 2500 atoms, taken from our
previous study.5 As expected, the computational cost of both
methods scales linearly with system size, thus allowing routine
analysis of systems comprising thousands of atoms. The
DDEC/c3 method is more expensive than DDEC/cc2 but
even for the largest system studied here has a computation time
of only around 30 min on 160 cores.
The average DDEC/c3 NAC on the O atom of the water

molecules in the bulk DFT calculations discussed above is
−0.80e, compared to the DDEC/cc2 NAC of −0.78e. The
difference of 0.02e between the two charge analysis schemes is
larger than expected, as the DDEC/cc2 has been shown to
perform well for small organic molecules.5 To investigate this
difference further, we compare the newly implemented DDEC/
c3 charge analysis scheme in ONETEP with the DDEC/cc2

scheme for a set of 25 small, neutral organic molecules in
vacuum. As shown in Figure 3, the correlation between the

DDEC/c3 and DDEC/cc2 charges is very good and the root-
mean-square deviation (RMSD) between the charge sets is just
0.003e, which indicates that the new functionality in DDEC/c3
does not affect small molecules in vacuum for which DDEC/
cc2 already performs well. Thus, there appears to be a larger
difference between the DDEC/c3 and DDEC/cc2 NACs in
bulk liquid simulations than in vacuum.
To investigate this difference between the DDEC/c3 and

DDEC/cc2 NACs in more detail, we have performed separate
DFT calculations of 267-molecule bulk liquid supercells of
three molecules from the test set (methanol, acetone and
dimethyl ether). The liquids were equilibrated under periodic
boundary conditions at room temperature and pressure, using
standard equilibration protocols, and the OPLS classical force
field64 in the boss program.65 The last snapshots from the
Monte Carlo simulations were used as input to the DFT
calculation in ONETEP. Figure 4 shows the DDEC/c3 and

DDEC/cc2 NACs averaged over all molecules in the simulation
cell. Although the NACs are qualitatively similar, there are
differences of up to around 0.02e on some atoms, which is in
excess of those seen in Figure 3. Table 1 shows the average
dipole moments of the molecules in the liquid phase computed
from the DDEC NACs. The liquids are more strongly polarized
in the DDEC/c3 scheme, and we attribute the difference to the
enforcement of exponentially decaying electron tails, which is
expected to have more of an effect in bulk systems than in

Figure 2. Computational time for DDEC postprocessing calculations
of bulk water on 160 Intel Sandy Bridge cores. The electron density is
stored on Cartesian grids of spacing 0.20 Bohr. The average DDEC/c3
NAC on the O atoms is −0.804e (compared to −0.783e for DDEC/
cc2).

Figure 3. Correlation between DDEC/c3 and DDEC/cc2 charges in
ONETEP for all atoms in the 25 molecule benchmark set.5 The RMSD
between the charge sets is 0.003e.

Figure 4. DDEC/c3 NACs of three liquids, acetone, dimethyl ether,
and methanol, averaged over 251 molecules. DDEC/cc2 NACs are
shown in parentheses for comparison.
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vacuum, and should act to improve the electron density
partitioning in these systems. A useful advantage of the atoms-
in-molecule formalism is that the partitioned electron density
may be expanded to include higher order atomic multipoles.
Table 1 also shows the average dipole moments of the
molecules including atomic dipole (the first moment of the
atomic electron density) contributions. The correction to the
dipole moments obtained by including atomic dipoles is
relatively small for these systems (close to 0.1D), indicating that
a point charge model of these condensed phase systems is a
reasonable one. The liquid-phase DDEC/c3 molecular dipole
moments are ∼10−25% larger than the measured gas phase
dipole moments,66 which is similar to factors that are typically
used to scale gas phase charges to account for polarization in
condensed phase media.67,68

Next, we investigate the performance of the ONETEP code in
the description of two crystalline systems for which we expect
there to be a greater difference between DDEC/c3 and DDEC/
cc2 charges. Table 2 shows the NACs of bulk Mo2C in the

PBCN phase, with a structure identical to that used in a
previous study.3 The electronic structure was computed using a
range of DFT software and the charge analysis performed using
both ONETEP and the CHARGEMOL codes. The first point to note
is that the previously described DDEC/cc2 charge analysis fails
to converge for Mo2C. In this case, the calculation terminates
because a charge of < −6e is assigned to the C atoms. This is
expected, since short Mo−C bond lengths give large electron
density overlap between atoms, and similar convergence failures
have been observed using the DDEC/c2 method and the
Mo2C(110) surface with an adatom.3 In contrast, the DDEC/
c3 method converges to a reasonable result for this system. Also
shown are charges computed using CHARGEMOL, with the CASTEP

plane-wave DFT code used for the underlying electronic
structure calculation. Increasing the k-point sampling in CASTEP

from a 3 × 3 × 3 k-point mesh to 9 × 9 × 9 changes the
charges by just 0.001e. The ONETEP/DDEC/c3 charges are
nearly indistinguishable from those using the CASTEP code. This
indicates not only that there is excellent agreement between the
ONETEP and CHARGEMOL implementations of the DDEC/c3
charge analysis method but also that the ONETEP calculation is

converged with respect to k-point sampling and basis set size.
We have also compared the computed NACs with previous
calculations performed in VASP, which used the projector
augmented wave method. The good agreement between the
two approaches indicates that the NACs are relatively
insensitive to the method used to treat the core electrons.
Finally, Table 3 compares the computed NACs for bulk Pd3V,

for which DDEC/c2 has been shown previously to assign
unintuitive charges.3 The electronegativities of Pd and V are
2.20 and 1.63, respectively, and so we expect V to be positively
charged in this alloy. Indeed, the DDEC/c3 charges converge
to a result that is in good agreement with previous data,3 while
DDEC/cc2 again fails to converge.

5. RESULTS
5.1. Platinum Nanoparticle. Dissociation of carbon

monoxide (CO) on metal surfaces is a fundamental process
in many catalytic processes, such as in the cleaning of
automotive exhausts.69 Nanoparticles can play an important
role in CO oxidation, not only because their small size
maximizes the catalytic surface area but also because quantum
confinement effects can modify the catalytic properties of the
material. Figure 5 shows a 55-atom Pt cuboctahedral nano-

particle with a CO molecule adsorbed on one of the (100)
facets. The geometry has been fully optimized in ONETEP, using
ensemble DFT to account for partial occupancies of states near
the Fermi level. The chosen particle is small enough that
quantum size effects are expected to increase catalytic activity
over the bulk material69,70 but large enough that a range of
adsorption sites are available. A typical computational
investigation into the activity of Pt55 would examine CO
oxidation pathways at a range of adsorption sites and use the

Table 1. Dipole Moments (D) of Molecules in Bulk Liquid
(l) and Gas Phase (g) Simulations from NACsa

ONETEP/DDEC/
cc2

ONETEP/DDEC/
c3 experiment66

methanol g 1.75 (1.64) 1.77 (1.64) 1.70
l 1.85 (1.79) 1.93 (1.87)

acetone g 3.21 (3.10) 3.23 (3.10) 2.88
l 3.12 (3.08) 3.32 (3.26)

dimethyl ether g 1.16 (1.24) 1.19 (1.24) 1.30
l 1.41 (1.54) 1.49 (1.60)

aValues in parentheses include atomic dipoles.

Table 2. NACs of Bulk Mo2C in the PBCN Phasea

ONETEP ONETEP CASTEP VASP
3

ONETEP/DDEC/cc2 ONETEP/DDEC/c3 CHARGEMOL CHARGEMOL

Mo N/A 0.524 0.522 0.569
C N/A −1.047 −1.045 −1.139

aThe first row of the table gives the software used for the DFT
calculation and the second, the software used for charge analysis.

Table 3. NACs of Bulk Pd3V
a

ONETEP ONETEP VASP
3

ONETEP/DDEC/cc2 ONETEP/DDEC/c3 CHARGEMOL

Pd N/A −0.13 −0.10
V N/A 0.39 0.31

aThe first row of the table gives the software used for the DFT
calculation and the second, the software used for charge analysis.

Figure 5. NACs for CO adsorbed on a Pt55 nanocluster. Color scale
ranges from +0.22e (red) to −0.22e (blue).
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DDEC/c3 method and other electronic structure analysis
techniques to elucidate the mechanisms of catalytic rate
enhancement. Such an understanding of how the nanoparticle
characteristics (size, shape, surface structure, composition)
affect the catalytic activity is of great industrial importance.
Here, we take a simpler approach and examine the NACs of a
single snapshot of the PtCO complex. In Figure 5, the atoms
are colored by the DDEC/c3 NACs. The polarity of the Pt55
cluster is relatively low, although there is some charge transfer
from the corner to the edge sites, which may affect adsorption
energies and subsequent oxidation steps of CO. The net charge
transfer between the adsorbed CO molecule and the nano-
particle is very small (0.01 e). However, the catalytic surface
does have the effect of substantially increasing the polarity of
the C−O bondthe DDEC/c3 NACs on CO are ±0.22e,
compared with ±0.08e for the isolated molecule. This
observation of increased polarity on the Pt surface is in good
agreement with a previous Mulliken analysis of Pt−CO
complexes.71

5.2. Polar Nanorods. Semiconductor nanostructures are an
interesting class of material, which show promise in a range of
applications, such as light-emitting diodes and solar cells.72,73 A
contributing factor to this interest is that their electronic and
optical properties differ from bulk structures of the same
composition, and they can be tuned by altering the synthesis
conditions.74 In particular, polar semiconductor nanorods have
been shown to exhibit a large dipole moment, which can affect
their internal electronic structure and optical properties.75 Yet
the factors that determine the rods’ polarity are difficult to
elucidate experimentally due to the lack of precision control of
the nanorod properties. Recent computational studies have
extensively reviewed the dependence of the dipole moment of
GaAs in the wurtzite structure on factors such as crystal
symmetry, surface termination, length, and cross-sectional
area.76−78 By using linear-scaling DFT, as implemented in the
ONETEP code, the authors were able to access size regimes
comparable to experimental results. They showed that the
dipole moment is strongly influenced by the surface chemistry
of the nanorod, but not in an intuitive manner expected from
simple charge-counting arguments. In fact, the potential
difference across the nanorod is effectively limited by the size
of the band gap in the structurea concept known as Fermi
level pinning.77,78 Thus, the electrostatic properties of the rod
are determined by its band gap, which itself can be altered by
quantum confinement, particularly in thin rods, which
necessitates large-scale QM calculations in conjunction with
population analysis if we require insight into the distribution of
atomic charges.
Following previous studies,76−78 we have performed DFT

calculations of two unrelaxed GaAs nanorods in the wurtzite
structure, grown parallel to the c-axis. In the bulk wurtzite
structure, each Ga and As atom is tetrahedrally coordinated.
The polar nanorod surfaces, perpendicular to the c-axis,
comprise one Ga-terminated surface and one As-terminated
surface (Figure 6). The ends of one nanorod are left bare, and
the other has dangling bonds terminated by hydrogen atoms
(H-terminated). On the lateral nanorod surfaces, parallel to the
c-axis, dangling bonds are hydrogen-terminated. The resulting
rods are approximately 8.5 nm in length and 1.8 nm2 in cross-
sectional area and comprise approximately 1000 atoms.
Following previous work in this area, we note that there is a
clearly defined gap in the local density of electronic states, while
the HOMO and LUMO are spatially separated at opposite ends

of the rod.78 Therefore, we ensured integer occupancy of the
Hamiltonian eigenstates and did not apply ensemble DFT54 in
this case.
Table 4 shows the electrostatic properties of the two

nanorods. As expected, the DFT-computed dipole moments of

the polar nanorods are large and the sign of the dipole is
reversed upon termination of the polar surfaces with hydro-
gen.76−78 The ability of NACs to reproduce the electrostatics of
the DFT calculation is important, particularly for force field
design where intermolecular interactions are often dominated
by the Coulomb potential. We have computed the DDEC/c3
charges of the two nanorods from our large-scale DFT
calculations. Figure 6a shows that the electrostatic potential
due to the NACs is in very good agreement with that of the
underlying DFT calculation, while Table 4 shows that the
dipole moments of the rods are in good agreement with the
DFT calculation but are overestimated in each case by
approximately 5%. By computing the atomic dipoles within
the atoms-in-molecule formalism (the first moment of the
atomic electron density), we may visualize where they are
greatest, and hence where there is a greater departure from
spherical symmetry in the atomic electron densities. Figure 6b
reveals that the atomic dipole moments are very small in the
bulk and on the lateral surfaces but much higher on the top/
bottom polar surfaces. This observation is in good agreement
with previous DDEC calculations3 on the SrTiO3(100) surface.
The point charge model electrostatic potential is stronger than
the DFT potential at the two ends of the rods. Table 4 reveals
that the root-mean-square error (RMSE) in the point charge
description of the electrostatic potential is around 3 kcal/mol,
which is slightly higher than has been found for proteins of a

Figure 6. (a) Electrostatic potential calculated using DDEC NACs and
DFT at the solvent-accessible surface of the bare polar nanorod. The
color scale is clipped at ±0.5 volts. (b) The z-components of the
DDEC atomic dipoles. The color range is from −0.58 (blue) to +0.58
D (red). Ga/As terminated surfaces are also indicated.

Table 4. Electrostatic Properties of Two Polar Nanorodsa

H-terminated bare

μDDEC −353.7 (−337.6) 177.7 (168.4)
μQM −337.6 168.4
RMSE 3.1 2.8
RRMSE 0.17 0.30

aDipole moments (D) along the z-axis of two polar nanorods (values
in parentheses include atomic dipoles), and the RMSE (kcal/mol) and
RRMSE (dimensionless) of fitting the electrostatic potential using
NACs.
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similar size (∼1.5 kcal/mol).5 The RRMSE is similar to a wide
range of materials.3

5.3. Metalloproteins. The binding of small molecules by
heme-based proteins plays a central role in the respiration
process. The heme molecule is used in myoglobin (Mb) and
hemoglobin proteins to, respectively, store and transport
oxygen (O2), while its function is hindered by carbon monoxide
(CO). The nature of the bonding between the central Fe atom
of heme and, in particular, the O2 molecule has been the subject
of much debate.79−83 From a computational perspective, the
calculation of the nature and energetics of binding are hindered
by two major factors. First, the strong electron correlations in
the localized Fe 3d orbitals strongly affect their energetic
overlap with π* acceptor orbitals on the O2 molecule. Second,
both computation and experiment indicate that there exists
substantial charge transfer from the Fe atom to O2, an effect
which is expected to stabilize the bound molecule via
electrostatic interactions with the protein (in particular, with
the residue His 64 shown in Figure 7).63 Thus, an accurate

computational description of the complex requires both a
sophisticated, computationally expensive, many-body method
for the Fe 3d orbitals84 and a large-scale model of the protein
that accurately describes long-ranged electrostatic interactions.
First, we investigate a large-scale quantum mechanical model

of the myoglobin−oxygen complex using spin-polarized DFT
within the generalized gradient approximation. The structure,
which includes the heme molecule, ligand, and a significant
portion of the protein (more than 1000 atoms), was taken from
previous studies63,83 and was based on the X-ray crystal
structure of oxygenated sperm whale Mb (PDB: 1A6M). Table
5 summarizes the charges of the Fe atom and its neighbors,
including the O2 molecule, in the DFT description of the
MbO2 complex, using natural population analysis
(NPA),33,85−87 and the DDEC/cc2 and DDEC/c3 schemes.
The amount of charge transfer to the O2 molecule is reasonably
consistent between the three methods, ranging from −0.20 to
−0.42e, and is in good agreement with a previous CASSCF/
MM study of the complex.81 The Fe atom is also coordinated
by four nitrogen atoms in the heme molecule (Nheme) and by
one nitrogen atom on residue His 93. The charge transfer from
Fe to N is slightly higher in the NPA method than in DDEC/c3
but within 0.25e per neighbor. It has been shown previously
that Fe NACs correlate well with core electron binding energies
in XPS measurements of a range of solids, which supports our

view that the DDEC/c3 charge assignment in Fe should be
reasonable in this system.3

Despite these apparently consistent data concerning the
charge of the O2 molecule in MbO2, there are doubts about the
approximate treatment of electron correlations in transition
metal chemistry using LDA, GGA, and common hybrid
exchange-correlation functionals.63,88 In particular, L-edge X-
ray absorption spectroscopy measurements on biomimetic
heme models indicate that π-bonding between Fe and O2,
which is expected to mediate metal-to-ligand charge transfer, is
stronger than predicted by GGA and hybrid functionals.81,82

Furthermore, the stretching frequency of the O−O bond in
MbO2 is close to that of the unbound O2

− ion,89,90 which is
inconsistent with the NACs extracted from the GGA density
(Table 5). To address these contradictory results, we have
applied a recently developed method that combines linear-
scaling DFT with dynamical mean field theory (DFT
+DMFT).91 DMFT substantially improves the accuracy of
strong electronic correlations in the Fe 3d subspace by taking
into account quantum and thermal fluctuations, which are
multireference effects not treated by conventional DFT.92

DMFT also includes the Hund’s exchange coupling J, which has
been shown to control strong correlation effects in heme.84 The
ONETEP DFT+DMFT approach has been previously applied to
the 1000 atom computational model of MbO2 shown in Figure
7, although only Mulliken and natural population analyses were
available.83 Table 5 summarizes the NACs of the Fe atom, its
neighbors, and the O2 molecule in the DFT+DMFT treatment
of the MbO2 complex at J = 0.7 eV, which is a typical value used
for materials containing iron.93 The first point to note is that
both NPA and DDEC/c3 analyses predict a much larger charge
transfer to the O2 molecule in the DFT+DMFT electronic
structure calculation compared with the GGA calculation.
There is a small concomitant decrease in electron density on
atoms surrounding the O2 binding site, and a further loss of
electron density is delocalized over the 1000 atom protein and
porphyrin system. The buildup of charge on the O2 molecule
was previously attributed to strong π-bonding between the Fe
3d orbitals and the O2 π* orbitals when multireference effects
are properly accounted for.83 Atoms-in-molecule partitioning of
the DFT+DMFT electron density confirms previous observa-
tions of strong metal-to-ligand charge transfer in MbO2,

83 and
in fact, the net DDEC/c3 charge on the O2 molecule of −0.98e
is extremely close to the chemically intuitive value of −1e that
was first proposed by Weiss in the 1960s.79

Figure 7. Heme binding site in MbO2. (Left) The full protein
structure (PDB: 1A6M) is shown in green and the 1000-atom region
that has been optimized in DFT as black lines. (Right) Close-up of the
heme binding site showing the atomic labels used in the text.

Table 5. Charges on the Metal and O2 Molecule in a 1000-
Atom Model of Myoglobina

GGA63 DMFT83

NPA DDEC/cc2 DDEC/c3 NPA DDEC/c3

Fe 1.13 0.45 0.58 1.13 0.48
O1 −0.17 −0.02 −0.06 −0.47 −0.42
O2 −0.25 −0.18 −0.19 −0.63 −0.56
Nheme −0.42 −0.32 −0.34 −0.43 −0.30
NHis93 −0.38 −0.19 −0.21 −0.35 −0.20
NHis64 −0.38 −0.18 −0.16 −0.41 −0.16

aElectronic structure calculations are performed using the generalized
gradient approximation (GGA) and a refined DFT+DMFT approach
(DMFT).
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6. CONCLUSIONS

Net atomic charges (NACs) are widely used in the chemical
sciences, because they provide a convenient description of
electron distribution among the atoms in a material. Multiple
ways to define NACs are possible, leading to different charge
assignment methods. Obviously, one should avoid methods like
Mulliken charges that explicitly depend on the basis set choice
and use methods that can be expressed as functionals of the
electron density. AIM methods that can be expressed as
functionals of the electron density include Bader, Hirshfeld,
iterative Hirshfeld (IH), iterated stockholder atoms (ISA),
density derived electrostatic and chemical (DDEC), and related
methods. The DDEC method combines desirable properties of
the IH and ISA methods. Like ISA, DDEC uses spherical
averaging to minimize the atomic multipole moments to more
accurately reproduce V(r) surrounding a material. Like IH,
DDEC uses reference ion densities to improve the chemical
transferability of the assigned atomic electron distributions.
Although we have mostly discussed DDEC NACs in this paper,
higher order multipole moments of the atomic electron
densities are also available and may be used to analyze
situations where the assumption of spherical atoms breaks
down or to parametrize multipolar models of the true QM
electrostatic potential. This expansion is similar to the ideas
behind the Distributed Multipole Analysis (DMA), which has
been shown to be beneficial in the description of anisotropic
electronic features, including but not limited to lone pairs and
σ-holes.35,94 In addition, DDEC may in the future be useful for
schemes that rely on atomic electron density distributions to
compute dispersion coefficients or atomic polarizabilities.56,57

In this article, we programmed the DDEC/c3 method3 into
the ONETEP linear-scaling DFT code. This implementation takes
advantage of ONETEP’s distributed memory model to perform
parallel DDEC calculations across multiple compute nodes.
Both the computational cost and memory requirements scale
linearly with increasing system size, allowing materials with
thousands of atoms in the unit cell to be efficiently studied.
This methodology adds the following improvements to the
previous DDEC/cc2 implementation in ONETEP:5 (a) core
electrons that are modeled by an effective core potential during
the DFT calculation are reinserted at the beginning of charge
analysis to provide an all-electron density partitioning, (b)
constraints enforce the electron density of buried atom tails to
decay exponentially to improve the chemical accuracy of charge
partitioning in dense materials, and (c) a precomputed library
of reference ion densities is used to avoid computing reference
ion densities on-the-fly and to allow access to a much wider
range of chemical elements. Users of the ONETEP code will have
the option of performing the original Hirshfeld electron density
partitioning, or the ISA37 or DDEC/c3 methods discussed in
this paper. Although there have been a number of modifications
to the original DDEC methodology, these have been carefully
tested over a wide range of materials to ensure good
performance, and thus the majority of users will not need to
adjust any parameters.
The accuracy of this implementation was benchmarked using

a test set of 25 small molecules, the Mo2C solid, the Pd3V solid,
and bulk liquid supercells of water, methanol, acetone, and
dimethyl ether. DDEC/c3 was much better for modeling the
Mo2C and Pd3V solids than DDEC/cc2, which failed to
converge in these cases. Moreover, results for Mo2C and Pd3V
solids using pseudopotentials in ONETEP were similar to those

obtained using the projector augmented wave (PAW) method
in VASP. DDEC/c3 and DDEC/cc2 gave essentially identical
results for the 25 small molecule test set of organic molecules.
Larger differences were seen for liquid methanol, dimethyl
ether, and acetone, and DDEC/c3 reproduced the expected
increase in polarization upon moving the molecules from the
gas to the liquid phase. The latter result may be important for
force field design, where the NACs should respond in an
intuitive manner to electrostatic changes in their environment.5

As an example of a nanomaterial with industrial potential, we
studied a pair of semiconducting GaAs nanorods comprising
approximately 1000 atoms. The sign of the dipole moments of
the rods depended on the surface termination, confirming
previous theoretical observations that synthesis conditions are
important for nanorod properties.76−78 An important consid-
eration when employing NACs in force field design is the
extent to which they are able to reproduce the electrostatic
properties of the underlying quantum mechanical calculation.
For each of the nanorods, the DDEC/c3 NACs reproduced
V(r) on the material’s solvent accessible surface to within
approximately 3 kcal/mol and reproduced the nanorod’s total
dipole moment to within approximately 5%. However, a large
departure from spherical symmetry was observed for the
electron densities of atoms on the polar surfaces of the
nanorods, indicating that a multipole expansion is more suitable
for these atoms.
We also studied a 55-atom Pt nanocluster with an adsorbed

CO molecule. Since this material is a good electrical conductor
with closely spaced energy levels surrounding the Fermi level,
the electron density distribution for this material was computed
using ensemble DFT. The DDEC/c3 NACs reveal that the CO
molecule is strongly polarized upon adsorbing from the gas
phase onto the metal surface.
As an example of a biomolecule with a heavy metal ion, for

which we might expect some differences between DDEC/c3
and DDEC/cc2, we studied a 1000-atom model of oxygenated
sperm whale myoglobin using previously computed generalized
gradient approximation (GGA)63 and dynamical mean field
theory (DFT+DMFT)83 electron densities. When using the
GGA exchange-correlation functional, the adsorbed O2 net
charge was −0.25 (DDEC/c3), −0.20 (DDEC/cc2), and −0.42
e (NPA). In cases where DFT functionals fail to accurately
describe strongly correlated electrons, multireference spin
states, or self-interaction errors, we have shown that DDEC/
c3 can be used to analyze the electron density from beyond-
DFT methods, such as DFT+DMFT, to improve chemical
understanding of such systems. Indeed, for both the natural
population analysis (NPA) and DDEC/c3 methods, the
adsorbed O2 net charge is approximately −1e following
refinement of the localized Fe 3d subspace with dynamical
mean field theory. Our DDEC/c3 results thus confirm a large
metal-to-ligand charge transfer in MbO2 and help to rationalize
the strong protein−oxygen electrostatic interactions that
stabilize the bound complex in vivo.
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