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ABSTRACT: The use of the Zwanzig equation in the calculation of single-step perturbations
to provide first-principles (ab initio) quantum mechanics (QM) correction terms to molecular
mechanics (MM) free energy cycles is well established. A rigorous test of the ability to converge
such calculations would be very useful in this context. In this work, we perform a direct
assessment of the convergence of the MM to QM perturbation, by attempting the reverse QM
to MM perturbation. This required the generation of extensive QM molecular dynamics
trajectories, using density functional theory (DFT), within the representative biological system
of a DNA adenosine−thymidine dimer. Over 100 ps of dynamics with the PBE functional and
6.25 ps with the LDA functional were generated. We demonstrate that calculations with total
potential energies are very poorly convergent due to a lack of overlap of phase space distributions between ensembles. While not
theoretically rigorous, the use of interaction energies provides far superior convergence, despite the presence of nonclassical
charge transfer effects within the DFT trajectories. The source of poor phase space overlap for total energies is diagnosed, the
approximate quantification of overlaps suggesting that even for the comparatively simple system considered here convergence of
total energy calculations within a reasonable simulation time is unfeasible.

■ INTRODUCTION

The accurate and rapid prediction of free energies of binding
and hydration for small molecule targets remains a long sought
goal in the field of computational chemistry.1 A range of
different techniques have been developed to tackle this
problem, the most accurate of which make use of extensive
molecular dynamics (MD) or Monte Carlo (MC) sampling and
rigorously derived free energy difference estimators.2−4 Two
factors limit the accuracy of these free energy techniques: the
realism of the energy model used to describe the potential
energy surface of interest and achieving a sufficient degree of
sampling of the system to obtain converged ensemble average
statistics. Highly realistic, i.e., first-principles quantum mechan-
ics (QM) based energy models are able to accurately model a
system’s potential energy surface but are prohibitively expensive
to undertake sufficient sampling of even moderately sized
systems. This practical restriction generally necessitates the use
of classically inspired molecular mechanics (MM) force fields.
Although computationally far cheaper, the approximate and
parametrized nature of MM methods places inherent
restrictions on the achievable accuracy of calculations using
MM potentials.
The dichotomy between MM and QM approaches has led to

the development of hybrid methods that attempt to exploit the
accuracy of QM models at a fraction of the computational cost,
through judicious combination with MM potentials.5−9 Perhaps
the simplest of these, and the focus of this work, allows the
calculation of additional QM correction terms to MM based
free energy cycles using a single-step free energy perturbation10

together with the Zwanzig equation.2 The one-sided sampling
of the Zwanzig equation allows the technique to avoid costly

sampling with the QM Hamiltonian. This advantage is
countered however by a more stringent requirement for
overlap between perturbation end states than other free energy
difference estimators.
The unstable numerical formulation of the Zwanzig equation

and its inherent directionality can make it difficult to determine
whether the condition of sufficient overlap has been met.1 In
this work, we consider direct assessment of the quality of phase
space overlap between MM and QM states through extensive
generation of QM MD trajectories to allow calculation of the
reverse, QM to MM, perturbation. Comparison of the forward
and reverse perturbations between an MM and QM
Hamiltonian with the Zwanzig equation allows direct validation
of the single-step perturbation procedure used to generate QM
corrections.
An adenosine−thymidine DNA base pair is used as a model

system, chosen to represent a compromise between biological
realism and computational tractability. Previous work has
considered the suitability of different MM water models in
hybrid calculations;11 however, the base pair system we
consider here provides a far more ambitious and biologically
relevant system. The size of the system is sufficient to allow
extensive sampling of the QM phase space, while also
representing a ubiquitous biological dimer.
Density functional theory12 (DFT) has arisen as the most

common QM method for carrying out MD calculations at the
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QM level of theory. Formulations of DFT have been developed
that allow scaling to biologically relevant system sizes9,13,14

(thousands of atoms), dramatically extending the range of
systems to which hybrid free energy techniques may be
profitably applied.
We generate DFT QM ensembles using MD with the PBE15

and LDA12 functionals. The PBE functional has been shown to
offer a good compromise between speed and accuracy in
describing biological compounds,16 and is frequently used in
this context.17−21 The LDA functional provides a less realistic
description of the system’s dynamics but usefully demonstrates
the behavior of the single-step perturbation where the MM and
QM phase spaces differ more markedly. Classical trajectories
are generated using the AMBER ff99SB22 and GAFF23 force
fields.

■ THEORETICAL BACKGROUND
Single-Step Exponential Averaging. The QM correction

to an MM calculation is given by the thermodynamic cycle in
Figure 1. In this case, the free energy of binding at the QM level

of theory, ΔAQM
bind, can be obtained from the same calculation at

the MM level, combined with the QM correction terms such
that ΔAQM

bind = ΔAMM
bind − ΔAMM→QM

solv + ΔAMM→QM
bound . The

computational cost of inferring ΔAQM
bind from the cycle must

be significantly cheaper than simply calculating this term
directly with standard free energy techniques. This is
dependent on an efficient method for the calculation of
ΔAMM→QM

solv and ΔAMM→QM
bound and is provided through the use of

the Zwanzig equation:2

β
βΔ = − ⟨ − Δ ⟩→A U

1
ln exp[ ]0 1 0

(1)

The Helmholtz free energy difference between two thermody-
namic states 0 and 1 is given by ΔA0→1. Here β has the typical
meaning of 1/kbT, while ΔU = U1 − U0, i.e., the potential
energy difference between the corresponding states, and ⟨...⟩0
represents an ensemble average over state 0. Unlike other
commonly used estimators (e.g., TI4 and BAR3), exponential
averaging requires sampling of only one end state. In an
approach first proposed and employed by Warshel,10 by
choosing the sampled state to be the MM level of theory, it
is cheap to generate a series of uncorrelated configurations that
can be postprocessed to the QM level:

β
βΔ = − ⟨ − − ⟩→A U U

1
ln exp[ ( )]MM QM QM MM MM

(2)

Here ΔAMM→QM is the free energy difference between the MM
and QM descriptions of the same chemical state, the
corresponding potential energies denoted by UQM and UMM.
While free energy calculations are typically broken down into a
series of steps using a lambda coupling approach, sampling any
intermediate lambda state for an MM to QM perturbation is as
prohibitively expensive as sampling under the full QM
Hamiltonian.
The Zwanzig equation is notoriously poorly convergent.

Calculations using this estimator therefore require a significant
degree of phase space overlap between states to converge
appropriately.1 Furthermore, it can be difficult to determine
when this criterion has been metthere may be rare, as yet
unsampled configurations that will heavily influence the
calculated free energy difference.
The drawbacks of the Zwanzig equation should inspire

considerable caution, and to our knowledge, it has yet to be
rigorously demonstrated that in general the overlap of QM and
MM free energy surfaces is sufficient to allow its use. Previous
work from this group has developed an alternative approach
based around charge perturbation to test for convergence of
hybrid MM and QM calculations.6 This provides a necessary
but not sufficient condition for convergence. We directly
address the convergence of single step perturbations by
considering the calculation of the reverse QM to MM process.
As free energy is a state property, the free energy difference
between the MM and QM states is invariant based on the
direction of the calculation. This provides a rigorous test for
convergence based on the condition

Δ + Δ =→ →A A 0MM QM QM MM (3)

In addition to the previously defined ΔAMM→QM, the reverse
perturbation from the QM to the MM state is denoted by
ΔAQM→MM. Evaluation of both terms in eq 3 applied to a model
system under different Hamiltonians therefore provides a direct
assessment of the feasibility of and degree of sampling required
in converging hybrid free energy calculations. Throughout this
work, the deviation from zero of eq 3 will be referred to as the
discrepancy of a perturbation.

Interaction Free Energy Differences. It is common
practice when employing hybrid free energy techniques to
make use of interaction energies in the place of total energies
within the free energy difference estimator.6,7,9−11,24−29 The
interaction energy of a system, UAB

inter, is given by

= − −U U U UAB
inter

AB A B (4)

where A and B denote two different components of the system,
the interaction energy of the two is given by the energy of the
complex, UAB, minus the energy of the two components in
isolation, UA and UB. In the case of a typical MM model, the
interaction energy can simply be derived by summing the
appropriate terms of the force field, while for QM models
additional calculations are required to account for the
polarization effects within the complex. Interaction energies
are then simply substituted in the place of total energies within
the estimator. In the case of the Zwanzig equation

β
βΔ = − ⟨ − Δ ⟩→A U

1
ln exp[ ]0 1

inter
0

(5)

Figure 1. Free energy cycle for the calculation of QM correction terms
to an MM binding free energy difference for the ligand L.
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This substitution is not without theoretical difficulties, as the
derivation of the Zwanzig equation is carried out using total
energies. As such, the consequences of this approximation are
unclear. As defined above, the interaction energy of a system
includes the energy of polarization and hence free energy
calculations using interaction energies are still able to capture
these effects.
Phase Space Overlap. The degree of phase space overlap

between thermodynamic states was assessed directly using the
following metric based on Bennett’s acceptance ratio (BAR).3

β β
Δ =

⟨ − + ⟩
⟨ − − ⟩

+ −→A
f U U C
f U U C

C
N
N

1
ln

( )
( )

1
ln0 1

0 1 1

1 0 0

1

0 (6)

β
= Δ +→C A

N
N

1
ln0 1

1

0 (7)

Here f(x) is the Fermi function f(x) = (1 + exp[βx])−1, while
N0 and N1 are the number of snapshots used to calculate the
respective ensemble averages. Equations 6 and 7 are solved self-
consistently until a converged estimate for ΔA0→1 is obtained.
The value of C describes an arbitrary shift in the relative height
of the two potential energy surfaces under consideration, the
self-consistent procedure giving the optimum value of C than
minimizes the statistical uncertainty of ΔA0→1. At this value of
C, denoted here as Copt, the condition ⟨f(U0 − U1 + Copt)⟩1 =
⟨f(U1 − U0 − Copt)⟩0 is met.
Bennett notes that the value to which the ensemble averages

converge, we shall refer to this as OBAR, provides information
about the sufficiency of sampling within a calculation, and is
given by

= ⟨ − + ⟩ = ⟨ − − ⟩O f U U C f U U C( ) ( )BAR 0 1
opt

1 1 0
opt

0
(8)

OBAR being small indicates that insufficient sampling of
important regions of phase space has occurred, whereas values
approaching 1 indicate sufficiency of sampling. Hence OBAR
may be used to assess the relative overlaps in phase space of
different potential energy surfaces by comparing values between
calculations with similar levels of sampling. Consider two
different free energy calculations of similar length, where one
gives a large value of OBAR but for which the other is small. It
may be reasonably concluded that as each calculation has been
sampled equivalently the perturbation with the larger value for
OBAR displays better overlap in phase space.
Additionally, Bennett provides an expression for direct

calculation of phase space overlap in the form of the following
integral:

∫=
+

O
P P

P P
x x

x x
x2

( ) ( )
( ) ( )

d0 1

0 1 (9)

where P0(x) and P1(x) give the probability of a configuration x
under different ensembles. Owing to the unfeasibility of
evaluating integrals of more than a few dimensions, we make
use of this expression in only a few single dimensional cases to
estimate phase space overlap of particular degrees of freedom.

■ METHODS AND CALCULATION SETUP
QM Calculations. All QM calculations were carried out

using the plane-wave DFT package CASTEP 5.5.30 Calcu-
lations using the LDA12 functional were carried out with a
kinetic energy cutoff of 900 eV with norm-conserving
pseudopotentials.31 PBE15 calculations used a kinetic energy

cutoff of 500 eV and ultrasoft pseudopotentials automatically
generated by CASTEP. Kinetic energy cutoffs in each case were
tested and chosen on the basis of the requirement of converged
energies. Electronic energies were converged to a tolerance of
10−5 eV per atom between SCF cycles, using a maximum g-
vector of 0.1 Å−1 for charge mixing and a grid spacing factor of
2.0 relative to the diameter of the cutoff sphere. A cubic
periodic box with sides of 20 Å was used for LDA calculations
and 25 Å for PBE; both box sizes are more than sufficient to
accommodate the A−T dimer. Long range electrostatics were
treated through Ewald summation.

MM Calculations. All MM calculations were carried out
using the AMBER 12 software suite.32,33 Calculations were
carried out using both the GAFF23 and ff99SB22 force fields.
Partial charges for use with the GAFF force field were produced
with ANTECHAMBER using the AM1-BCC charge meth-
od.34,35 A cutoff of 8 Å was used in the calculation of
nonbonded interactions, and the particle mesh Ewald (PME)
method was used for long-range electrostatics. The PME was
validated against the conventional Ewald approach for electro-
statics to confirm the equivalent treatment between the MM
and QM Hamiltonians (see the Supporting Information). A
cubic periodic box with sides of 20 Å was used for ff99SB
calculations and 25 Å for GAFF.

Molecular Dynamics. The same MD protocol was used for
both the MM and QM systems. Initial structures for production
MD were generated by the NAB module of AMBER, and
subsequently minimized for 50 iterations with the appropriate
potential energy function. Bases were modeled with the
associated deoxyribose component but without phosphate
present. For each Hamiltonian, five independent repeats with
the same starting configuration were run. All MD calculations
were carried out with a time step of 0.25 fs, as determined by
the requirement for constant energy dynamics under the NVE
ensemble. Production MD runs were carried out in the NVT
ensemble with periodic boundary conditions. Temperature
control was achieved using the Langevin thermostat with a
collision constant of 0.1 ps−1 to regulate the system at 300 K.
The only differences between MD calculations for the MM

and QM systems, besides the choice of Hamiltonian, lies in the
different algorithms used by CASTEP and AMBER. AMBER
employs the leapfrog integrator to solve equations of motion,
while minimizations employed the conjugate gradient algo-
rithm. Born−Oppenheimer ab initio MD calculations in
CASTEP employed the velocity Verlet algorithm, while
minimizations were based on the Broyden−Fletcher−Gold-
farb−Shannon (BFGS) algorithm.36

Generation of QM and MM trajectories was carried out
simultaneously and was continued until the discrepancy of all
perturbations with interaction energies was close to zero. This
criteria produced a total trajectory length of 6.25 ps with the
LDA functional and 100.0 ps with the PBE functional. In each
case, this total simulation time was split between five
independent repeats of equal length. The only exception to
this is the ff99SB trajectories that do not match the full length
of the PBE trajectories but are 25 ps in total.

Potential of Mean Force Calculations. Potential of mean
force calculations were carried out using MD with linear
constraints with CASTEP.37 An additional 25 short (1500 time
steps) MD runs were carried out with linear constraints placed
on the N−H−N hydrogen bond between thymidine and
adenosine. The N−H and H−N bonds were considered as
separate degrees of freedom constrained at 0.2 Å intervals, from
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1.0 to 1.8 Å. This gives a 5 by 5 grid of points, corresponding to
the 25 runs. Constraints were enforced using the RATTLE38

algorithm. The mean force required to maintain each constraint
is equal to the gradient of the free energy surface at that point.
The surface itself is then generated through use of the Euler
method,39 taking the lowest point of the PMF to be zero.

■ RESULTS AND DISCUSSION

Single-Step FEP. Results of all perturbations between the
four considered Hamiltonians are given in Figure 2. Although
our stated aim was to examine perturbations between MM and
QM states, it was considered trivial additional work to complete
the calculations for all possible perturbations. Completion of
the larger cycle allows for a more rigorous test of convergence

through the computation of cycle closures. Unfortunately,
closures are nontrivial to calculate, as each leg has two
separately calculated free energy differences associated with it.
Different forward and reverse calculations can be used in any
permutation to provide a value for the cycle closure. We
compromise by calculating all possible permutations for each
cycle and reporting the minimum, maximum, and mean
unsigned closures. It is immediately apparent from these
results that interaction energies provide much tighter cycle
closures than using total energies. Although the reported
minimum closures using total energies are close to zero, the
large associated standard errors suggest this is simply spurious,
through a fortunate combination of different components of the
cycle. The mean and maximum closures are exceedingly poor

Figure 2. Free energy cycles constructed between all Hamiltonians using (a) total energies and (b) interaction energies. A single standard error for
each perturbation is shown, derived from the standard deviation of the five repeats of each calculation. On the right of each diagram, the minimum,
maximum, and mean closures of the illustrated cycle are shown. Standard errors for closures are calculated by summing the variance of each leg of
the cycle involved. Standard errors for mean closures were calculated by taking the average variance of all possible leg permutations for each cycle.

Figure 3. Discrepancies for forward and reverse perturbations within the free cycles using (a) total energies and (b) interaction energies. One
standard error is shown for all results, calculated by summing the variance of the forward and reverse calculation.
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however and suggest the unsuitability of total energies in hybrid
free energy work. Although a recent paper has presented results
that give successful convergence with total energy calculations,
the general applicability of this approach has yet to be
demonstrated in a system as complex as that considered here.8

The convergence of each leg of the cycle can be assessed by
calculating the discrepancy between the forward and reverse
perturbation, as given by eq 3. This is shown in Figure 3. For
total energies, no particular leg in the cycle can be highlighted
as responsible for the poor convergence; even the best
converged leg (the PBE to LDA perturbation) has a
discrepancy of greater than 10 kcal/mol. The use of interaction
energies however is much more compelling. All perturbations

fall close to or less than one standard error from zero, with the
exception of the PBE to ff99SB calculations (p-value <0.05
from an unpaired Student’s t test that the free energy
differences in either direction are drawn from different
distributions).
The magnitude of the free energy differences is considerable

when using total energies. Interpretation of these values should
be taken with care, as all energies calculated are given with
respect to an arbitrary reference value, determined by the
Hamiltonian. The difference in this reference value between
Hamiltonians gives very large apparent free energy differences.
The use of the free energy cycles such as in Figure 1 accounts
for this reference state effect and gives meaningful relative free

Figure 4. (a and b) Example configurations from an LDA MD run, with the proton exchanged (a) and not exchanged (b). (c and d) Time series of
r1 and r2 from an example LDA (c) and PBE (d) MD run. (e) Free energy surface of proton exchange between bases using the LDA functional. The
solid lines indicate the paths taken by the five LDA MD trajectories. Dashed contour lines are plotted every 0.25 kcal/mol.
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energy changes. Interpretation of the values associated with
individual legs of the cycle should be carried out with care
however.
It might be argued that the convergence of calculations using

total energies fails simply due to the large differences in the size
of the energy values associated with each Hamiltonian. To test
for the possibility of numerical instability caused by differences
in reference state, arbitrary constants were used to adjust
energy values within individual perturbations. This allows for
the exponential terms in Figure 2 to be scaled to numerically
tractable regions; the unadjusted free energy difference can
then be recovered by removing the arbitrary constant used. In
practice, this procedure was found to have no effect on the
discrepancy of each perturbation. Moreover, it can be shown
analytically that the discrepancy is invariant with respect to the
difference in reference state between Hamiltonians (see the
Supporting Information). As long as care is taken to avoid
numerical overflows in the exponential terms, the difference in
scale of the energy values has no effect on the convergence
properties of a calculation.
These results indicate that, in practical terms, the use of

single step perturbation techniques is restricted to interaction
energies. In addition to the significantly superior convergence
properties of interaction energies, they provide a more intuitive
interpretation for the resulting free energy differences, as
differences in the strength of interaction under different
Hamiltonians. For interaction energies, all Hamiltonians share
a naturally defined common reference state, namely, the two
bases at infinite separation. In practice, the use of interaction
energies is commonplace with hybrid MM and QM
work.6,7,9−11,24−29 Despite this prevalence, however, it is our
opinion that the use of interaction energies is not formally
correct in the context of free energy calculations based on the
Zwanzig equation which is derived for total energies. A rigorous
theoretical and practical examination of the consequences of
using interaction energies will be presented in upcoming work.
In practice, however, the poor convergence of total energy
calculations leaves little choice but to use interaction energies.
The failure of calculations using total energies is suggestive of

poor overlap between the potential energy surfaces of the
different Hamiltonians. That only total energies are affected
suggests the problem pertains to the intramolecular degrees of
freedom of the system. This is considered in more detail in a
later section.
QM MD Trajectories. Within the QM trajectories, some

examples of proton exchange were observed between the N−H
of the thymidine and the N hydrogen bonding partner of
adenosine (see Figure 4). Marked exchange events were
observed within two of the five trajectories with the LDA
functional; this is particularly significant given their short
duration. In contrast, the PBE functional demonstrated
comparatively little exchange, only two events occurring within
one the five repeats of considerably greater length. Character-
ization of the free energy barrier of proton exchange under the
LDA functional was carried out through potential of mean force
of constraint (PMFC) calculations, using CASTEP. This reveals
a free energy barrier of around 1.0 kcal/mol, well within the
range expected to be crossed due to thermal fluctuations at 300
K. This value is perhaps underestimated due to the coarse
resolution of the PMF and the short, constrained trajectories
used to generate it. The key features of the landscape appear to
be recreated, however, and transitions between the minima
occur across the saddle point. The observation of hydrogen

exchange within this system may also be attributed to the
propensity of DFT functionals to underestimate proton
exchange barriers.40

The comparative rarity of proton exchange events under the
more accurate PBE functional suggests that exchange is due to
the shortcomings of the LDA functional, leading to unphysi-
cally low barriers within the MD runs. Production of an LDA
ensemble is still of considerable value, as it is noted that a
converged free energy difference can still be calculated even
where the QM Hamiltonian includes nonclassical effects, such
as charge transfer or polarization. Owing to the formulation of
the Zwanzig equation, configurations with very high energies in
the classical Hamiltonian (such as a highly stretched covalent
bond in the case of the proton exchange) are negligibly likely to
occur under classical dynamics and hence do not contribute to
the free energy difference. Conversely, while sampling under
the QM Hamiltonian, configurations stabilized by nonclassical
effects have large negative values of ΔU and hence small
contributions to the overall free energy difference.

Phase Space Overlap. The failure of calculations to
converge with the use of total energies is indicative of a
violation of the requirement for sufficient phase space overlap
of not only the MM and QM potential energy surfaces but of all
the energy models. That this problem can be ameliorated with
the use of interaction energies suggests the practical reason for
the widespread use of this approximation. Normal modes show
very good agreement between all Hamiltonians used in this
work, suggesting that normal-mode analysis is insufficient to
assess phase space similarity in this case (see the Supporting
Information).
To examine the extent to which using interaction energies

improves phase space overlap, the value of OBAR was calculated
for all perturbations using total and interaction energies (Table
1). Although values of OBAR cannot profitably be compared

between perturbations due to differing simulation lengths,
values for total and interaction energies within perturbations
can be compared directly, as they are produced from the same
data. The use of interaction energies provides between 5 and 16
orders of magnitude improvement in the value OBAR. The
smaller overlap values for interaction energies between the
LDA functional and classical potentials can be rationalized in
terms of the proton-exchange events seen in the LDA
trajectories. It is comforting to note that the calculated overlap
is superior between the PBE functional and classical potentials
than to the LDA functional. Perhaps unsurprisingly, the
specialized parameters of the ff99SB force field are noted to
offer enhanced overlap with the PBE functional compared to
the GAFF force field. Regardless, the values of OBAR presented
for perturbations involving GAFF are still more than sufficient
to suggest the feasibility of the single-step perturbation.

Table 1. OBAR Values for Each Perturbation Using Total and
Interaction Energies, Calculated as Described in the
Theoretical Background Section

perturbation total energies interaction energies

GAFF ↔ ff99SB 3.71 × 10−3 ± 3.72 × 10−3 0.98 ± 0.00
LDA ↔ ff99SB 4.38 × 10−10 ± 8.75 × 10−10 0.12 ± 0.04
LDA ↔ GAFF 1.46 × 10−16 ± 2.91 × 10−16 0.08 ± 0.04
PBE ↔ ff99SB 5.46 × 10−5 ± 1.20 × 10−4 0.56 ± 0.02
PBE ↔ GAFF 9.77 × 10−12 ± 1.38 × 10−11 0.40 ± 0.03
PBE ↔ LDA 2.19 × 10−5 ± 1.76 × 10−5 0.56 ± 0.14
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The striking improvement in phase space overlap provided
by interaction energies suggests that the poor total energy
results are likely due to the failures in the overlap of
intramolecular degrees of freedom. Using interaction energies
reduces the number of degrees of freedom that are considered
within the perturbation to exclude intramolecular terms.
Additionally, it is noted generally that intramolecular potentials
tend to be less “soft” then their intermolecular counterparts.
This suggests that in general it is easier to satisfy the required
phase space overlap for intermolecular interactions that have
broader probability distributions.
To pinpoint the particular intramolecular degrees of freedom

that give rise to poor total energy overlaps, a simple analysis
restricted to the systems’ bond lengths was used. From the
trajectory data, distributions for all bond lengths under the PBE
and GAFF Hamiltonians were generated, as these are the
longest and hence best sampled trajectories. Overlaps between
the distributions of corresponding bonds under different
Hamiltonians were then calculated using eq 9. The 64 covalent
bonds in the base pair give rise to a distribution of overlaps, as
shown in Figure 5a. The majority of bonds display excellent
overlap between the MM and QM ensembles, but a number
demonstrate considerably reduced overlap caused by an offset
in equilibrium lengths. The worst example of this is given in
Figure 5b, showing the C4−O4 bond within thymidine (using
the Amber force field atom naming conventions22).
Each bonded degree of freedom can be approximated as

varying independently with respect to the other bonds of the
system (see the Supporting Information for correlation analysis
of MD trajectories). An estimate of the combined overlap of
the PBE and GAFF Hamiltonians can therefore be obtained by
taking the product of the overlaps for each individual bond.
This overlap estimate is limited to a subregion of the
configuration space of the system as defined by those covalently
bonded degrees of freedom and gives a value of 2.132 × 10−5.
This represents a generous upper bound on the overlap of the
two states, as the inclusion of additional degrees of freedom can
only serve to lower the combined overlap of the system.
Although the majority of bonds within the system present an
overlap of greater than 0.95, the comparatively small number
with poor overlap values can combine to give a globally poor
overlap between states. This estimate of the overlap falls short
of that required for the convergence of calculations using
BAR.41 As a less efficient estimator, the Zwanzig equation
requires even better phase space overlap between states. The

values of OBAR for the different perturbations presented in
Table 1 support the use of the Zwanzig equation, as they
suggest significant overlap is achieved between intermolecular
degrees of freedom.

■ CONCLUSIONS

The data presented in this work constitute a direct validation of
the MM to QM single step free energy perturbation procedure,
through completion of the reverse QM to MM perturbation.
This required the generation of extensive ab initio MD
trajectories within a model biological system. The A−T DNA
dimer chosen for these calculations represents a compromise
between biological complexity and expense of calculations. In
total, over 100 ps of ab initio MD was generated using plane-
wave DFT.
Importantly, the practical restriction that perturbations must

be carried out with interaction energies instead of total
potential energies is established. Discrepancies between forward
and reverse perturbations are shown to be on the order of tens
of kcal/mol, for total energies, but nearing zero for interaction
energies. Although single step perturbation techniques have
been used for some time, the requirement to use interaction
energies is often glossed over or not explicitly stated.
The failure of total energy calculations with the Zwanzig

equation is explained in terms of poor phase space overlap
between MM and QM Hamiltonians. Marked differences
between the phase space distributions of intramolecular degrees
of freedom are highlighted as problematic. Although limited to
only the covalently bonded degrees of freedom, our analysis
gives very low upper-bound estimates for total energy phase
space overlap. This analysis also suggests caution in hybrid free
energy work around the common practice of enforcing bond
length constraints. Constraints may improve overlap between
MM and QM ensembles, by removing problematic degrees of
freedom from being sampled, but run the risk of constraining
ensembles outside their global minimum, distorting calculated
free energy differences. The extent to which this problem may
be avoided through the use of interaction energies is unclear.
König et al. have examined the effect of bond length constraints
in a simple hybrid free energy perturbation of ethane to
methanol.8

Interaction energy calculations are demonstrated to exhibit
markedly better overlap between ensembles, and improved
convergence of single step free energy calculations. The

Figure 5. (a) Distribution of overlaps between GAFF and PBE ensembles for covalent bonds in the base pair calculated using eq 9. (b) Distribution
of the C4−O4 bond of thymidine under different Hamiltonians.
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presence of nonclassical proton exchange interactions between
the bases does not prevent stable convergence of the calculated
free energy differences.
In addition to the single step methodology considered in this

work, there have been other notable suggestions for hybrid free
energy work based around more elaborate sampling or
reweighting techniques.7,8 We expect the generated QM
ensembles from this work to provide a valuable data set for
the analysis of other methodologies.
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