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Abstract
The ONETEP program employs the single-particle density matrix reformulation of Kohn–Sham
density functional theory to achieve computational cost and memory requirements which
increase only linearly with the number of atoms. As the code employs a plane wave basis set
(in the form of periodic sinc functions) and pseudopotentials it is able to achieve levels of
accuracy and systematic improvability comparable to those of conventional cubic-scaling plane
wave approaches. The code has been developed with the aim of running efficiently on a variety
of parallel architectures ranging from commodity clusters with tens of processors to large
national facilities with thousands of processors. Recent and ongoing studies which we are
performing with ONETEP involve problems ranging from materials to biomolecules to
nanostructures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Simulations from first principles have been particularly
successful in predicting properties and processes of matter.
The approach of density functional theory (DFT) [1] in
particular, in the formalism developed by Kohn and Sham [2]
has been most widely used for simulations as it allows
excellent approximations for the exchange and correlation
energy with a computational cost which is significantly
lower and scales more favourably than methods that use
correlated wavefunctions. The computational machinery for
DFT calculations has matured over the years to a number
of robust and reliable approaches that can be used routinely
even by non-experts. Major milestones include the plane wave
pseudopotential approach [3] and Car–Parrinello approach [4]
which combines nuclear dynamics with the relaxation of
the electronic degrees of freedom. DFT has now become
established as a practical tool for materials design and has
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been used in cutting edge research in academia [5]. As a
consequence of these achievements, DFT calculations have
been adopted by industrial researchers as a useful tool, even
though not all needs of applied research have been met by the
progress in theory and algorithms.

Despite the excellent progress, the computational scaling
of DFT calculations is a severe obstacle that prevents them
from achieving their full potential. The computational cost
of conventional DFT typically increases with the third power
of the number of atoms N . While this scaling is still
more favourable than the steeper scaling of most correlated
wavefunction approaches, it still limits the applicability of DFT
methods to no more than a few hundred atoms, even when
supercomputers are employed for the calculations. There are
therefore difficulties in the applicability of DFT in cases where
the description of the interactions between thousands of atoms
is necessary as in the realistic modelling of nanostructures [6]
or in problems in molecular biology. Therefore efforts to
produce DFT approaches with linear-scaling cost began more
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than a decade ago; the main theoretical principles that underlie
the various methods are summarized in [7]. The development
of practical linear-scaling methods requires the solution of
many technical problems and was therefore not as rapid as
originally predicted. Significant progress has been made
however and currently a number of codes [8–14] with linear-
scaling capabilities are available.

The purpose of this paper is to provide an outline
of current applications with our linear-scaling DFT code
ONETEP [8] which aims to achieve the high level of accuracy
and systematicity of plane wave approaches. In section 2 we
provide an overview of the theory on which ONETEP is based and
of its implementation for parallel computers. Then in section 3
we describe recent and ongoing applications with the code and
we conclude with a summary and future outlook in section 4.

2. Overview of the ONETEP method

2.1. Density matrix formulation

The set of Kohn–Sham orbitals {ψn(r)} provides a complete
description of the fictitious system of non-interacting particles
in DFT. An equivalent description may also be given by the
single-particle density matrix

ρ(r, r′) =
∑

n

fnψ
∗
n (r)ψn(r′) (1)

which possesses the property of idempotency,

ρ2(r, r′) =
∫

d3r ′′ρ(r, r′′)ρ(r′′, r′) = ρ(r, r′) (2)

which implies the orthonormality of the orbitals ψn(r) and the
requirement that the occupancies fn are equal either to one for
all states up to the chemical potential or zero for all other states,
according to the antisymmetry requirement of the electronic
wavefunction. The density matrix in Kohn–Sham theory is thus
the position representation of the projection operator onto the
space of occupied states ρ̂. The density n(r) may be obtained
from the diagonal elements of the density matrix,

n(r) = 2ρ(r, r) (3)

where the factor of 2 accounts for spin degeneracy (assuming
no spin polarization). The total energy of the interacting
system is given by

E[n] = −
∫

d3r [∇2
r′ρ(r, r′)]r′=r +

∫
d3r vext(r)n(r)

+ EH[n] + Exc[n] (4)

where the terms on the right-hand side of the above
equation are the kinetic energy, the energy due to the
external potential(s), the Hartree energy and the exchange and
correlation energy, in accordance with standard notation [15]
in atomic units and the definition of density in equation (3).
Using a variational methodology [16], the total energy can be
obtained by minimizing the expression of equation (4) with
respect to the density matrix, subject to the constraints of
idempotency (2) and normalization,

Ne = 2
∫

d3r ρ(r, r) (5)

i.e. the density matrix corresponds to a system of Ne electrons.

Since the number of occupied states is directly
proportional to N and each state extends over the whole
system, the amount of information in the density matrix
defined by equation (1) scales as N2. Any calculation
involving manipulation of this density matrix will therefore
scale quadratically with system size at best. In order to
obtain a linear-scaling method, it is necessary to exploit the
nearsightedness property [17, 18] of many-body quantum
mechanics.

Both analytical [19, 20] and numerical [21] studies have
demonstrated that, for an insulating system, both the Wannier
functions and density matrix decay exponentially, so that

ρ(r, r′) ∼ exp(−γ |r − r′|) → 0 as |r − r′| → ∞. (6)

The decay rate γ depends only on the energy gap between
the highest occupied and lowest unoccupied states, and not
on the system size, therefore the total amount of significant
information it contains scales linearly with N . In practice this
is exploited by writing the density matrix in the following form:

ρ(r, r′) =
∑

αβ

φα(r)K αβφ∗
β(r

′) (7)

where the {φα} are a set of spatially localized non-orthogonal
functions which span a superspace of the Hilbert space
of the set of occupied Kohn–Sham orbitals and in ONETEP

they are called non-orthogonal generalized Wannier functions
(NGWFs) [22]. The matrix K αβ , known as the density
kernel [23] is the representation of the density matrix in the
set of duals of the NGWFs. The advantage of this form is
that it allows the nearsightedness to be exploited with the use
of spatial cut-offs. First, the NGWFs which are exponentially
localized are truncated, by allowing them to be non-vanishing
only in spherical regions of fixed radii rα and centred at
positions Rα . In ONETEP, a number of NGWFs are associated
with each atom in the system, so that the regions are centred
on atoms and their radii depend only on the atomic species.
Second, the density kernel is required to be a sparse matrix,
and this is achieved by discarding elements K αβ corresponding
to NGWFs centred further apart than some cut-off rK. Note
that since the density kernel is constructed from the duals of
the NGWFs, rK cannot simply be defined as the sum of the
NGWF radii. In ONETEP the total energy (4) is optimized by
direct minimization with respect to both the density kernel and
the NGWFs [24]. This in situ optimization of the NGWFs leads
to high accuracy and eliminates difficulties such as the basis set
superposition error (BSSE) [25] which are present in methods
with fixed localized functions and can severely compromise
the reliability of the results obtained. The lack of BSSE is
a consequence of the flexibility of the NGWFs to adopt any
shape within their localization region and is not affected by
the fact that the rα are finite. Imposing spatial cut-offs on
the NGWFs and the density kernel results in a density matrix
whose information content scales linearly with system size,
an approximation which is controlled by adjusting the rα and
rK. In practice, these cut-offs are increased until the desired
physical properties of the system converge [26].
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Figure 1. Speed-up of ONETEP calculations on a 9600-atom carbon nanorope segment (shown on the left) as a function of the number of
processors. The calculations were performed on a commodity cluster consisting of 24 dual-socket dual-core nodes.

Recently we have implemented atomic forces and the
capability to perform geometry optimization and Born–
Oppenheimer molecular dynamics simulations. The theoretical
methodology behind these developments and examples
demonstrating their capabilities will be presented elsewhere.

2.2. Parallel implementation

The ONETEP code has been developed from the beginning for
parallel computers. The implementation is highly portable and
is based on a distributed data model where communication
between processors is achieved through use of the message
passing interface (MPI) [27] library. A detailed description of
the parallel implementation has been presented [28]. The code
and its parallel algorithms are under constant development and
we have made several important improvements in the parallel
algorithms since the publication of this paper. Most notably
these include improvements in our sparse matrix algebra
module which now distributes the matrices to processors by
columns which are of course related to atoms for which we
have a very efficient data distribution scheme [28].

To assess the efficiency of the code as it currently stands
we have performed a series of tests which are summarized in
the plot of figure 1. The plot shows the speed-up in the time of
a self-consistent iteration in ONETEP (density kernel and NGWF
geometry optimization steps) as a function of the number of
processors. The calculations were performed on a ‘nanorope’
made of six (20,0) nanotube segments, with 9600 atoms in
total. An orthorhombic unit cell of 70.0 Å × 70.0 Å × 85.2 Å
and a plane wave kinetic energy cut-off of 470 eV [29] for the
psinc basis were used. The density matrix cut-offs were set to
rα = 3.7 Å and rK = 7.9 Å. The calculations were performed
on a cluster consisting of 24 IBM 326m nodes connected
with a 24-port Infiniband switch. Each node contained 8 GB
of RAM and two Dual Core AMD Opteron 285 processors
operating at a clock speed of 2.6 GHz. The plot of figure 1

was obtained by setting the speed-up at 32 processors exactly
equal to 32, the smallest number of processors where memory
limitations allowed all four cores per node to be used (at 24,
16 and 12 processors 2, 1 and 1 cores per node were used
respectively). The wall clock time taken for one SCF iteration
on 96 processors is 2.5 h.

The plot shows that a speed-up of 95.1 is achieved when
96 processing cores are used, which is the maximum available
on the cluster on which these tests were conducted. Similar
clusters are nowadays widely available amongst research
groups as they are rather inexpensive and relatively easy to
maintain. Our results indicate that the code is likely to show the
same extremely good parallel scalability on such commodity
clusters. For far larger calculations, national supercomputing
facilities are now available which offer opportunities to run
on thousands of cores. The performance of the code on
such platforms has not been explored yet but we are currently
seeking opportunities to do this in the near future.

3. Recent applications with ONETEP

ONETEP is a newly developed code but already it has found use
in a multitude of problems involving materials that range from
bulk crystalline solids, to biomolecules, to nanostructures. In
this section we take a tour though some of the applications
which we we have recently completed or are currently working
on with the code.

3.1. Crystalline silicon

Periodic crystalline solids are particularly challenging for
linear-scaling approaches as their structure involves a high
atom-density that consequently reduces the sparsity of matrices
such as the local-orbital representation of the Hamiltonian.
This leads to an increase in the number of atoms where
a linear-scaling approach begins to outperform conventional
cubic scaling approaches, known as the ‘cross-over’ point.

3
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Figure 2. Energy as function of lattice for crystalline silicon as obtained from ONETEP calculations with different values of the kernel cut-off
rK, in Å. The curve obtained with the cubic-scaling plane wave code CASTEP is also shown as well as the simulation cells used for the
calculations (1000-atom cell for ONETEP and 8-atom cell for CASTEP).

If the solid happens to be a semiconductor the difficulties
are exacerbated as the small band gap decreases the rate of
decay of the density matrix. Crystalline silicon is therefore a
particularly difficult example for a density matrix based linear-
scaling code.

Despite these difficulties, we have recently performed a
detailed study with ONETEP on crystalline silicon [26] through
which we have shown that it is possible, while using linear-
scaling conditions and algorithms, to achieve results of plane
wave accuracy. To perform this study we have used a
simulation cell of 1000 atoms which is sufficiently large to
allow testing of various values of the density kernel cut-
off rK. The CASTEP [30] code which is an implementation
of the conventional cubic-scaling plane wave pseudopotential
approach, was used as an accuracy benchmark by performing
calculations in a unit cell of 8 atoms with a mesh of 5 ×
5 × 5 k-points set up so that it imitates the 1000-atom
cell of ONETEP. Some of the calculations are summarized
in figure 2 which shows the behaviour of the energy as a
function of the lattice parameter for several values of rK with
rα fixed to 3.7 Å. In going from rK = 5.29 to 10.58 Å,
the value of the lattice constant calculated by fitting the
graph to the Birch–Murnaghan equation of state [31] goes
from 5.412 to 5.385 Å. Also the bulk modulus, a property
which is very sensitive to calculation parameters, varies from
122.7 to 97.8 GPa. The ‘correct’ values from CASTEP are
5.384 Å and 96.3 GPa respectively. Accuracy comparable to
this of conventional cubic-scaling plane wave calculations can
therefore be achieved even for this rather demanding case.

3.2. BaTiO3

Another example of a crystalline solid that is being studied
using ONETEP is the perovskite barium titanate (BTO), BaTiO3.
It is viewed as the model ferroelectric, undergoing a
displacive phase transition from cubic to tetragonal structure
at 120 ◦C. Ferroelectric materials possess a permanent electric
dipole moment which may be reversed or reoriented by the
application of an electric field. They are thus of great
technological interest, particularly within the microelectronics
industry where one promising application is computer memory.

Alloyed with strontium titanate, Ba1−x Srx TiO3 is a leading
candidate for the next generation of dynamic random access
memory. The relatively small sizes of traditional DFT
calculations restrict the variation of Sr concentration x
attainable by straightforward atomic substitution, a constraint
that may be relaxed using ONETEP without resorting to the
virtual crystal approximation. Larger simulations also permit
the realistic simulation of defects such as oxygen vacancies,
which play a vital role in these materials, particularly
their interaction with grain boundaries. The study of
such materials also provides an opportunity to assess the
physical significance of the NGWFs generated by ONETEP.
The electronic polarization of an insulating crystalline solid
may be related to the centres of charge of the valence
band Wannier functions [32, 33], allowing the calculation
of the Born effective charges for BTO [34]. This formal
connection applies equally to the maximally-localized Wannier
functions (MLWFs) [35] generated from the Bloch functions of
traditional DFT calculations. The extent to which the NGWFs
reflect this relationship has yet to be established. Figure 3
shows the qualitative change that occurs when pseudoatomic
orbitals are optimized in situ to generate NGWFs. The
familiar s, p and d orbital shapes of the former, resulting
from the spherical symmetry of the closed-shell ionic cores,
is evident, whereas the symmetry of the NGWFs reflects
that of the crystal. In addition, radial nodes have been
introduced as would be required in the MLWFs to maintain
orthogonality, even though this constraint is not imposed on
the NGWFs. Band structure calculations obtained by taking
linear combinations of NGWFs to generate Bloch functions
also indicate that in addition to giving an accurate measure of
average properties (such as the total energy), they also describe
the details of the electronic structure. It is therefore likely that
the NGWFs themselves may be used to calculate observable
properties directly, providing a further advantage to linear-
scaling methods based on in situ optimized local orbitals.

3.3. Protein–ligand binding

Studies of biomolecules are usually carried out with classical
force field approaches [36]. The major advantage of force

4
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(a) (b) (c)

(d) (e) (f)

Figure 3. Examples of the in situ optimization of NGWFs in barium titanate. (a)–(c) The pseudoatomic orbitals used as initial guesses for the
NGWFs are generated from spherically symmetric ionic cores: (a) p orbital on Ba, (b) d orbital on Ti and (c) s orbital on O. (d)–(f) The
optimized NGWFs on the same atoms now reflect the crystal symmetry.

1.404                 1.686 1.760 1.755

Binding  energy (eV): 

1.388                    --- --- ---

ONETEP

CASTEP

Figure 4. Binding energy of a staurosporine ligand into the ATP pocket of the CDK2 protein as a function of the CDK2 fragment size.

fields is that they can provide the energy as a function of
atomic coordinates at a computational cost which is several
orders of magnitude smaller that that of a first principles
quantum mechanical calculation. As a consequence, force
fields are used routinely to perform dynamical simulations
as they allow to access timescales (usually a few ns,
depending on total number of atoms) that are often long
enough to allow sufficient sampling of phase space for the
simulation of dynamical processes and also the calculation
of various thermodynamic quantities through the laws of
statistical mechanics. Nevertheless, classical force fields are by
construction empirical and the quality of their parameterization
is a constant concern. Most force fields also have inherent
limitations such as the inability to form or break chemical
bonds and the lack of electronic effects such as polarization
and charge transfer.

These effects need to be taken into account for a
qualitatively correct description of the energetic contributions
in various situations such as for example when studying the
binding of a small ligand molecule into the cavity of a protein.

The procedure that is usually followed to tackle such problems
involves using a mixed quantum mechanical/molecular
mechanical (QM/MM) description where the quantum
mechanical description includes the ligand and a small part of
its binding cavity. This approach is far from ideal as it gives
rise to other concerns such as convergence of the important
contributions with the size of the quantum region and how and
where to define the interface of the quantum region with the
classical region.

Having the capability to perform large-scale first
principles calculations with ONETEP we have decided to use
a fully quantum description to investigate the binding of
small ligands to the CDK2 protein [37], thus avoiding the
ambiguities that exist in QM/MM approaches. The first
part of our study consisted of a calibration stage where the
binding energy was calculated for increasing sizes of the
protein binding pocket, as shown in figure 4. Our results
show that convergence to less than 0.01 eV (	0.23 kcal mol−1)
is achieved with protein fragments with about 1000 atoms,
which is better than the ‘chemical accuracy’ threshold of
1 kcal mol−1.

5
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Figure 5. Left: a ribbon diagram showing the tertiary structure of one RAD51-BRC complex. Right: density isosurfaces of the constituent
proteins of the complex from ONETEP calculations.

We have subsequently carried out long classical molecular
dynamics simulations of the proteins in explicit water at room
temperature. This approach is necessary in order to capture the
dynamical behaviour of these systems as certain ligand-protein
interactions are periodically established and disrupted during
the simulation. DFT calculations on ensembles of structures
(including water molecules stabilized in the protein) were then
used to compute the relative average binding energies of the
ligands. The relative binding affinities of the ligands obtained
from these average energies are in remarkable agreement with
experimentally determined values [37]. Therefore such a
combination of linear-scaling DFT with classical dynamics
simulations results in an approach that appears to have the
sensitivity to further screen inhibitors that have been selected
by cruder drug optimization approaches.

3.4. Protein–protein interactions

Most biological processes essential for cellular regulation in-
volve the regulated formation and disassembly of macromolec-
ular complexes between proteins. The rational design of small
molecules that inhibit protein–protein interactions is an im-
portant goal for drug discovery but it also offers the poten-
tial to deepen our understanding of the chemical interactions
that underpin biological function. However, the design of such
small molecule inhibitors (SMIs) remains very difficult, de-
spite the growing evidence that such an approach is feasible,
at least in principle, for many protein–protein interactions of
key biological interest. One major difficulty in evaluating the
‘druggability’ of specific protein–protein interactions, and sub-
sequently in rational SMI design, is the high complexity of
the atomic interactions that contribute to the binding energy
of the complex. A major challenge, therefore, is to develop
approaches to dissect the energetic contributions of particular
amino acid residues to the overall binding energy of a given
protein–protein interaction. This problem is more challenging
than that of a drug molecule docking into the binding pocket of
one protein as the area of interaction usually involves the entire
proteins.

ONETEP region 

Classical region 

boundary

Figure 6. ONETEP with Dirichlet boundary conditions: the Hartree
potential is obtained by solving the Poisson equation in the ONETEP

region.

An important biomolecule whose function involves
protein–protein interactions is the breast cancer susceptibility
protein BRCA2 [38, 39]. This is a massive protein of
approximately 3500 amino acids. The active region of
this protein consists of 8 similar subunits, of 30–40 amino
acids each, which are called the BRC repeats. Each BRC
repeat binds with different strengths to the RAD51 DNA
recombinase protein. This is necessary in order to position
RAD51 onto double strand breaks in DNA and initiate its
repair though the process of homologous recombination.
Initial molecular dynamics simulations we have carried
out [40] in this system show that the beta-hairpin structure
of the BRC repeat is stabilized by numerous intramolecular
hydrogen bonding backbone–backbone, backbone–sidechain
and sidechain–sidechain interactions and as a result, even when
it is not bound to RAD51, it retains a conformation that closely

6
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Figure 7. The top left panel shows a classical electrostatic calculation where the nanotube is represented as a 200 nm-long classical conductor
in a cell where the plates that create the electrostatic field are 400 nm apart. The top right panel shows the cell of the ONETEP calculation which
has a side of 5 nm and is embedded in the classical calculation. The bottom panel shows a slice of the electrostatic potential at the tip, where
atomic details and the barrier that the electrons have to overcome are clearly visible. The Fermi level is also depicted.

resembles the bound form. We are currently using ONETEP

calculations to evaluate the relative binding strengths of the
different BRC repeats. Figure 5 shows the protein structure in
one of our calculations. For each repeat the binding energy is
obtained from ONETEP calculations on an ensemble of structures
from the classical dynamics simulation. About 2500 atoms are
involved in each such single point energy calculation. The
role of the solvent (i.e. water and counter ions) in driving
the association of the protein complexes (e.g. the hydrophobic
force), is currently not taken into account in our calculations.
We are currently implementing in ONETEP implicit solvation
models with which we will subsequently investigate these
effects.

3.5. Carbon nanotubes in electric fields

The ONETEP code has been constructed to use periodic boundary
conditions. This however does not prevent calculations on

isolated molecules. Isolated molecules can be described
accurately and efficiently through the supercell approximation
as the FFT box technique [41] on which the code is based
allows for calculations in very large simulation cells so that
molecules can be effectively isolated from their periodic
images. There are nevertheless cases where it is useful to
have an explicitly-defined non-periodic boundary, and we have
recently implemented [42] such a scheme in ONETEP.

In standard ONETEP calculations Fourier transform tech-
niques are used to solve the Poisson equation for the Hartree
potential in momentum space where, by definition, a periodic
boundary is imposed. Our new scheme involves solving for
the Hartree potential in real space with its values predefined in
the simulation cell boundary (Dirichlet boundary conditions).
The values of the potential at the boundary obviously need to
be provided. These are usually obtained from a classical elec-
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trostatic model as demonstrated in figure 6, which can be of
much larger scale than the ONETEP calculation. The rest of the
calculation is performed using the standard ONETEP method-
ology [22, 43, 44]. We have used this scheme to calculate
the electrostatic potential around the tip of capped metallic
single-walled carbon nanotubes inside a uniform external elec-
tric field. The strength of the external field was set below but
near the values where electronic field emission is experimen-
tally observed [45]. The actual set up, including the electro-
static potential obtained in one of our calculations is shown in
figure 7. It is obvious that this system cannot be described cor-
rectly with periodic boundary conditions. A much larger clas-
sical electrostatic calculation is performed where the nanotube
is simply represented as a ‘conductor’ and has length compa-
rable to nanotubes used in experiments (hundreds of nm). This
allows the correct charge built up at the tip of the tube and the
potential distribution around it to be obtained. Then the ONETEP

calculation is ‘embedded’ in the classical calculation to obtain
in atomic detail the potential around the tip as well as other rel-
evant quantities such as the electronic charge density and the
energy levels. As a result, the exact shape of the barrier that
the electrons have to overcome is obtained and its dependence
on the type of nanotube and the shape of its cap can be investi-
gated and compared with experiment [46].

Obviously this electrostatic embedding approach is very
flexible and can be applied to other kinds of problems which
require explicit non-periodic boundary conditions.

4. Conclusions and outlook

We have reviewed recent methodological developments and
applications with the ONETEP linear-scaling DFT code. The
code is capable of running efficiently on parallel computers
with an arbitrary number of processors and we have already
been using it in numerous applications. Results show that with
ONETEP we are able to achieve plane wave accuracy in large-
scale calculations on crystalline solids such as in the case of a
1000-atom unit cell of crystalline silicon. Calculations on other
crystalline materials of industrial importance such as barium
titanate ferroelectric perovskite are in progress. Applications
of the code in protein–ligand and protein–protein interactions
have proved that it is a very powerful tool for biomolecular
studies as it allows for the accurate description of all energetic
contributions on entire biomolecules. The code is also being
used for calculations on nanostructures such as capped carbon
nanotubes where is allows us to obtain a correct atomistic
description of the electronic density and electrostatic potential
under external electric fields.

It is obvious that linear-scaling DFT is now a reality and
it allows problems which require large-scale DFT calculations
to be tackled. ONETEP is a state-of-the-art method for such
calculations. It is under continuous development and we
therefore expect its range of capabilities to increase in the
near future. Its user base in academia and industry is steadily
increasing so increases are also expected in the number of
studies that are performed with it.
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