CHEM3023: Spins, Atoms and Molecules

Lecture 3

The Born-Oppenheimer approximation

C.-K. Skylaris

Learning outcomes

- Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer approximation
- Be able to manipulate expressions involving electronic wavefunctions, taking into account spin and space coordinates and antisymmetry

Separating electronic from nuclear coordinates

Nuclei are much heavier than electrons (e.g. Proton mass ≈ 1800 times the mass of an electron => compare kinetic energy operators of proton and electron).

As a result nuclei move much slower than electrons. To a very good approximation, we can assume that the electronic motions are instantaneously "equilibrated" at each nuclear position.

Example: Vibration of diatomic molecule:

Wrong picture: "electron cloud" trails behind moving nuclei

 nucleus

Correct picture: "electron cloud" instantaneously re-arranges itself around moving nuclei

Hamiltonian operator for water molecule

Water contains 10 electrons and 3 nuclei. We will use the symbols " O " for the oxygen (atomic number $\mathrm{Z}_{\mathrm{O}}=8$) nucleus, " H 1 " and " H 2 " (atomic numbers $\mathrm{Z}_{\mathrm{H} 1}=1$ and $\mathrm{Z}_{\mathrm{H} 2}=1$) for the hydrogen nuclei.

$$
\begin{aligned}
& \hat{H}_{\mathrm{H}_{2} \mathrm{O}}=-\frac{1}{2 M_{\mathrm{O}}} \nabla_{\mathbf{R}_{\mathrm{O}}}^{2}-\frac{1}{2 M_{\mathrm{H} 1}} \nabla_{\mathbf{R}_{\mathrm{H} 1}}^{2}-\frac{1}{2 M_{\mathrm{H} 2}} \nabla_{\mathbf{R}_{\mathrm{H} 2}}^{2}-\sum_{i=1}^{10} \frac{1}{2} \nabla_{\mathbf{r}_{i}}^{2} \\
& \text { Kinetic Kinetic Kinetic } \\
& \text { energy of energy of energy of Kinetic energy } \\
& \begin{array}{lll}
\text { O } & \text { H1 } & \text { H2 }
\end{array} \\
& -\sum_{i=1}^{10} \frac{8}{\left|\mathbf{r}_{i}-\mathbf{R}_{\mathrm{O}}\right|}-\sum_{i=1}^{10} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{R}_{\mathrm{H} 1}\right|}-\sum_{i=1}^{10} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{R}_{\mathrm{H} 2}\right|} \\
& \text { Electron Electron Electron } \\
& \text { attraction attraction attraction } \\
& \text { to O to H1 to H2 } \\
& +\sum_{i=1}^{10} \sum_{\substack{\text { Electron-electron } \\
\text { repulsion }}}^{10} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{I=1}^{3} \sum_{\substack{J=I+1 \\
\text { nucleus-nucleus } \\
\text { repulsion }}}^{3} \frac{Z_{I} Z_{J} \longleftarrow}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} \quad \begin{array}{c}
\text { E.g. Assume } \\
\mathbf{Z}_{1}=\mathbf{Z}_{\mathrm{o}} \\
\mathbf{Z}_{2}=\mathbf{Z}_{\mathrm{H}} \\
\mathrm{Z}_{3}=\mathrm{Z}_{\mathrm{H} 2}
\end{array}
\end{aligned}
$$

Hamiltonian operator for water molecule

Water contains 10 electrons and 3 nuclei. We will use the symbols " O " for the oxygen (atomic number $\mathrm{Z}_{\mathrm{O}}=8$) nucleus, " H 1 " and " H 2 " (atomic numbers $\mathrm{Z}_{\mathrm{H} 1}=1$ and $\mathrm{Z}_{\mathrm{H} 2}=1$) for the hydrogen nuclei.

Example: Nuclear attraction potential for one O and two H

$$
\mathrm{O}+\mathrm{H}_{2}
$$

- How does the Hamiltonian operator differ between these examples?
- Can you suggest how you may model the reaction $\mathrm{OH}+\mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{O}$

Born-Oppenheimer (or adiabatic) approximation

Solve Schrödinger's equation only in the electronic coordinates for each set of given (fixed) nuclear coordinates.

$$
\begin{gathered}
\hat{H}=-\sum_{I} \frac{1}{2 M_{I}} \nabla_{I}^{2}+\sum_{I} \sum_{J>I} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}-\sum_{i}^{\frac{1}{2} \nabla_{i}^{2}+\sum_{i} \sum_{j>i} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{i} \sum_{I}-\frac{Z_{I}}{\left|\mathbf{r}_{i}-\mathbf{R}_{I}\right|}} \\
\hat{H}_{\text {elec }} \Phi_{\text {elec }}=E_{\text {elec }} \Phi_{\text {elec }}
\end{gathered} \hat{H}_{\text {elec }}
$$

$$
\Phi_{\text {elec }}=\Phi_{\text {elec }}\left(\left\{\mathbf{r}_{i}\right\} ;\left\{\mathbf{R}_{I}\right\}\right)
$$

$$
E_{e l e c}=E_{e l e c}\left(\left\{\mathbf{R}_{I}\right\}\right)
$$

Abstract

The resulting wavefunctions and energies have a parametric dependence in the coordinates of the nuclei

- Central to Chemistry: allows to find reactants, products, transition states, reaction paths
- We will use the Born-Oppenheimer approximation throughout this course

Potential Energy Surface (PES)

The electronic energy is a function of the nuclear positions. So is the internuclear repulsion energy. Their sum is the "total energy" of a molecule under the B.O. approximation. One can represent this as a surface, which is called the potential energy surface (PES).

Reactants, products, transition states, reaction paths

Chemical reactions can be represented as paths followed on a PES

- Reactants and products are minimum energy points on the PES
- Transition states are points on the PES where the energy is maximum along one direction and minimum along all other directions

- We can locate reactants, products and transition states by following paths on the PES until a minimum (or maximum in one direction for TS) is reached (zero partial derivative of energy with respect to each atomic coordinate)

Spin, antisymmetry and the Pauli principle

- Each electron has a "spin", an intrinsic property which has the characteristics of rotational motion, and is quantised
- Electronic spin is described by a spin angular momentum quantum number $s=1 / 2$, and its z-component $m_{s}=1 / 2$ ("up" spin) or $-1 / 2$ ("down" spin)
- We represent the two spin states of the electron by two spin wavefunctions $\alpha(\omega)$ and $\beta(\omega)$ which are orthonormal:

$$
\begin{aligned}
\int \alpha^{*}(\omega) \alpha(\omega) d \omega & =\int \beta^{*}(\omega) \beta(\omega) d \omega=1 \\
\langle\alpha \mid \alpha\rangle & =\langle\beta \mid \beta\rangle=1 \\
\int \alpha^{*}(\omega) \beta(\omega) d \omega & =\int \beta^{*}(\omega) \alpha(\omega) d \omega=0 \\
\langle\alpha \mid \beta\rangle & =\langle\beta \mid \alpha\rangle=0
\end{aligned}
$$

Spatial and spin coordinates

- To describe the spin of an electron we therefore include an extra "spincoordinate"
- Therefore, an electron is described not only by the three spatial coordinates $x, y, z(=r)$ but also by its spin coordinate ω
- We will denote these four coordinates collectively by \mathbf{x}

$$
\mathbf{x}=\{\mathbf{r}, \omega\}
$$

- Particles whose spin quantum number s is a half-integer (e.g. $1 / 2,3 / 2$, $5 / 2$, etc) are called Fermions
- Electrons and protons are examples of Fermions
- Particles whose spin quantum number s is an integer (e.g. 1, 2, 3) are called Bosons. Photons are examples of Bosons

Antisymmetry of electronic wavefunctions

-Wavefunctions of Fermions change sign when the coordinates (space and spin) of any two particles are exchanged.
-This property is called antisymmetry:

$$
\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}, \ldots, \mathbf{x}_{j}, \ldots, \mathbf{x}_{N}\right)=-\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j}, \ldots, \mathbf{x}_{i}, \ldots, \mathbf{x}_{N}\right)
$$

-Electrons are Fermions, therefore electronic wavefunctions must be antisymmetric
-We need to include antisymmetry in all approximate wavefunctions we construct

Summary / Reading assignment

- Born-Oppenheimer approximation (Cramer, page 110)
- Many-electron wavefunctions (Cramer, pages 119122)
- Antisymmetry of electronic wavefunctions (Cramer, pages 122-126)

