CHEM3023: Spins, Atoms and Molecules Lecture 3

The Born-Oppenheimer approximation

C.-K. Skylaris

Learning outcomes

- Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer approximation
- Be able to manipulate expressions involving electronic wavefunctions, taking into account spin and space coordinates and antisymmetry

Separating electronic from nuclear coordinates

Nuclei are much heavier than electrons (e.g. Proton mass \approx 1800 times the mass of an electron => compare kinetic energy operators of proton and electron).

As a result nuclei move much slower than electrons. To a very good approximation, we can assume that the electronic motions are instantaneously "equilibrated" at each nuclear position.

School of Chemistry

Hamiltonian operator for water molecule

Water contains 10 electrons and 3 nuclei. We will use the symbols "O" for the oxygen (atomic number $Z_0=8$) nucleus, "H1" and "H2" (atomic numbers $Z_{H1}=1$ and $Z_{H2}=1$) for the hydrogen nuclei.

Hamiltonian operator for water molecule

Water contains 10 electrons and 3 nuclei. We will use the symbols "O" for the oxygen (atomic number $Z_0=8$) nucleus, "H1" and "H2" (atomic numbers $Z_{H1}=1$ and $Z_{H2}=1$) for the hydrogen nuclei.

Example: Nuclear attraction potential for one O and two H

 $O + H_{2}$

- How does the Hamiltonian operator differ between these examples?
- Can you suggest how you may model the reaction OH+H → H₂O

Born-Oppenheimer (or adiabatic) approximation

Solve Schrödinger's equation only in the electronic coordinates for each set of given (fixed) nuclear coordinates.

$$\hat{H} = -\sum_{I} \frac{1}{2M_{I}} \nabla_{I}^{2} + \sum_{I} \sum_{J>I} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} - \sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i} \sum_{J>i} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{i} \sum_{I} -\frac{Z_{I}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|}$$

$$\hat{H}_{elec} \Phi_{elec} = E_{elec} \Phi_{elec} \qquad \hat{H}_{elec}$$

$$\Phi_{elec} = \Phi_{elec}(\{\mathbf{r}_i\}; \{\mathbf{R}_I\})$$

 $E_{elec} = E_{elec}(\{\mathbf{R}_I\})$

The resulting wavefunctions and energies have a **parametric dependence** in the coordinates of the nuclei

- Central to Chemistry: allows to find reactants, products, transition states, reaction paths
- We will use the Born-Oppenheimer approximation throughout this course

Potential Energy Surface (PES)

The electronic energy is a function of the nuclear positions. So is the internuclear repulsion energy. Their sum is the "total energy" of a molecule under the B.O. approximation. One can represent this as a surface, which is called the potential energy surface (PES).

School of Chemistry

Reactants, products, transition states, reaction paths

Chemical reactions can be represented as paths followed on a PES

- Reactants and products are minimum energy points on the PES
- Transition states are points on the PES where the energy is maximum along one direction and minimum along all other directions

• We can locate reactants, products and transition states by following paths on the PES until a minimum (or maximum in one direction for TS) is reached (zero partial derivative of energy with respect to each atomic coordinate)

Spin, antisymmetry and the Pauli principle

- Each electron has a "spin", an intrinsic property which has the characteristics of rotational motion, and is quantised
- Electronic spin is described by a spin angular momentum quantum number $s=\frac{1}{2}$, and its z-component $m_s = \frac{1}{2}$ ("up" spin) or $-\frac{1}{2}$ ("down" spin)
- We represent the two spin states of the electron by two spin wavefunctions $\alpha(\omega)$ and $\beta(\omega)$ which are orthonormal:

$$\int \alpha^*(\omega)\alpha(\omega)d\omega = \int \beta^*(\omega)\beta(\omega)d\omega = 1$$
$$\langle \alpha | \alpha \rangle = \langle \beta | \beta \rangle = 1$$

$$\int \alpha^*(\omega)\beta(\omega)d\omega = \int \beta^*(\omega)\alpha(\omega)d\omega = 0$$
$$\langle \alpha|\beta \rangle = \langle \beta|\alpha \rangle = 0$$

Spatial and spin coordinates

- To describe the spin of an electron we therefore include an extra "spincoordinate"
- Therefore, an electron is described not only by the three spatial coordinates x, y, z (=r) but also by its spin coordinate ω
- We will denote these four coordinates collectively by **x**

$$\mathbf{x} = \{\mathbf{r}, \omega\}$$

- Particles whose spin quantum number s is a half-integer (e.g. 1/2, 3/2, 5/2, etc) are called Fermions
- Electrons and protons are examples of Fermions
- Particles whose spin quantum number **s** is an integer (e.g. 1, 2, 3) are called Bosons. Photons are examples of Bosons

Antisymmetry of electronic wavefunctions

•Wavefunctions of Fermions change sign when the coordinates (space and spin) of any two particles are exchanged.

•This property is called antisymmetry:

$$\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_i,\ldots,\mathbf{x}_j,\ldots,\mathbf{x}_N) = -\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_j,\ldots,\mathbf{x}_i,\ldots,\mathbf{x}_N)$$

- •Electrons are Fermions, therefore electronic wavefunctions **must be antisymmetric**
- •We need to include antisymmetry in all approximate wavefunctions we construct

Summary / Reading assignment

- Born-Oppenheimer approximation (Cramer, page 110)
- Many-electron wavefunctions (Cramer, pages 119-122)
- Antisymmetry of electronic wavefunctions (Cramer, pages 122-126)

