CHEM3023: Spins, Atoms and Molecules Lecture 2

Bra-ket notation and molecular Hamiltonians

C.-K. Skylaris

Learning outcomes

- Be able to manipulate quantum chemistry expressions using bra-ket notation
- Be able to construct Hamiltonian operators for molecules

Dirac's "bra-ket" shorthand notation

- Paul Dirac introduced a shorthand notation for quantum chemical integrals that greatly simplifies written expressions without any loss in information
- •This notation has been widely adopted and we will also use it throughout this course

$$\int \Psi^*(\mathbf{x}) \, \hat{C} \, \Phi(\mathbf{x}) \, d\mathbf{x}$$
 becomes $\langle \Psi | \hat{C} | \Phi
angle$

A "bra" A "ket"
$$\langle \Psi | \equiv \int d\mathbf{x} \, \Psi^*(\mathbf{x}) \qquad |\Phi \rangle \equiv \Phi(\mathbf{x})$$

Write the Schrödinger equation in bra-ket notation

Bra-ket notation practice

Starting from the Schrödinger equation, write down an expression for the energy

Integral formBra-ket form
$$\hat{H}\psi(\mathbf{x}) = E\psi(\mathbf{x})$$
 $\hat{H}|\psi\rangle = E|\psi\rangle$

$$\psi^*(\mathbf{x})\hat{H}\psi(\mathbf{x}) = \psi^*(\mathbf{x})E\psi(\mathbf{x})$$

$$\int \psi^*(\mathbf{x}) \hat{H} \psi(\mathbf{x}) d\mathbf{x} = \int \psi^*(\mathbf{x}) E \psi(\mathbf{x}) d\mathbf{x} \qquad \langle \psi | \hat{H} | \psi \rangle = \langle \psi | E | \psi \rangle$$

$$\int \psi^*(\mathbf{x}) \hat{H} \psi(\mathbf{x}) d\mathbf{x} = E \int \psi^*(\mathbf{x}) \psi(\mathbf{x}) d\mathbf{x}$$

$$\langle \psi | \hat{H} | \psi \rangle = E \langle \psi | \psi \rangle$$

. .

$$E = \frac{\int \psi^*(\mathbf{x}) \hat{H} \psi(\mathbf{x}) d\mathbf{x}}{\int \psi^*(\mathbf{x}) \psi(\mathbf{x}) d\mathbf{x}}$$

$$E = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle}$$

Bra-ket notation practice

Write down the following in bra-ket notation

$$\begin{split} \int f(\mathbf{x}) g^*(\mathbf{x}) d\mathbf{x} & \int f(\mathbf{x}) g(\mathbf{x}) d\mathbf{x} & \int f^*(\mathbf{x}) g(\mathbf{x}) d\mathbf{x} & \int f^*(\mathbf{x}) g^*(\mathbf{x}) d\mathbf{x} \\ \psi(\mathbf{x}) \int \psi^*(\mathbf{x}') f(\mathbf{x}') d\mathbf{x}' & \int f^*(\mathbf{x}) [a g(\mathbf{x}) + b h(\mathbf{x})] d\mathbf{x} \\ \int f^*(\mathbf{x}) \hat{H} \hat{H} g(\mathbf{x}) d\mathbf{x} & \int f^*(\mathbf{x}) (\hat{H}_1 + \hat{H}_2) g(\mathbf{x}) d\mathbf{x} \end{split}$$

$$\int \psi^*(x) \, \frac{d}{dx} \phi(x) dx$$

Bra-ket notation practice (continued)

- Assume that for the operator A the following is true: $\langle \phi | \hat{A} | \psi \rangle = \langle \psi | \hat{A} | \phi \rangle^*$
- f_i are the eigenfunctions of A, with eigenvalue equation: $\hat{A}f_i = a_if_i$

 $\langle f_i | \hat{A} | f_i \rangle = \langle f_i | \hat{A} | f_i \rangle^*$ $\langle f_i | a_i | f_i \rangle = \langle f_i | a_i | f_i \rangle^*$ $a_i \langle f_i | f_i \rangle = a_i^* \langle f_i | f_i \rangle^*$ $(a_i - a_i^*) \langle f_i | f_i \rangle = 0$ $a_i = a_i^*$

Therefore the eigenvalues of *A* are real numbers.

Re-derive this result using integral notation

Hermitian operators

An operator which satisfies the following relation

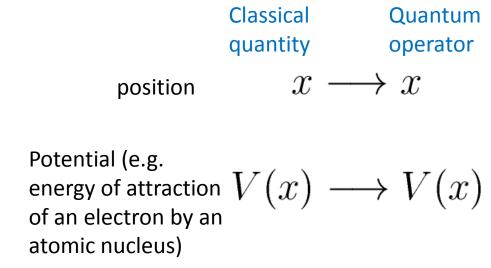
$$\langle f | \hat{C} | g \rangle = \langle g | \hat{C} | f \rangle^*$$

is called Hermitian

- We showed that Hermitian operators have real eigenvalues
- All experimentally observable quantities are real numbers
- As a result quantum mechanical operators that represent observable properties (e.g. energy, dipole moment, etc.) must be Hermitian

Constructing operators in Quantum Mechanics

Quantum mechanical operators are the same as their corresponding classical mechanical quantities



With one exception!

The momentum operator is completely different:

$$mv_x \longrightarrow -i\hbar \frac{d}{dx}$$

Building Hamiltonians

The Hamiltonian operator is the total energy operator and is a sum of

- (1) the kinetic energy operator, and
- (2) the potential energy operator

 $T = \frac{1}{2}mv_x^2 = \frac{(mv_x)^2}{2m}$

The potential energy operator is straightforward

$$\hat{V} = V(x)$$

 $\hat{H} = \hat{T} + \hat{V}$

$$\hat{T} = \frac{1}{2m} \left(-i\hbar \frac{d}{dx} \right) \left(-i\hbar \frac{d}{dx} \right) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

So the Hamiltonian is:
$$\hat{H} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)$$

CHEM3023 Spins, Atoms and Molecules

Force between two charges: Coulomb's Law

Electrons and nuclei are charged particles

$$\underbrace{F}_{\text{Like charges repel}} \begin{array}{c} q_2 & F \\ \text{Like charges repel} \\ \text{Unlike charges attract} \\ \P_{q_1} & F \\ \hline F \\ q_2 \end{array} \begin{array}{c} F \\ F \\ \hline F \\ q_2 \end{array} \end{array} F = \frac{kq_1q_2}{r^2} = \frac{q_1q_2}{4\pi\epsilon_0 r^2} \begin{array}{c} Coulomb's \\ Law \end{array}$$

Energy of two charges

$$E_{q_1q_2} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{|\mathbf{r}|}$$

Distance between charge q_1 at point \mathbf{r}_1 and charge q_2 at point \mathbf{r}_2

$$|\mathbf{r}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} = |\mathbf{r}_2 - \mathbf{r}_1|$$

Coulomb potential (or operator)

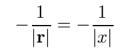
$$E_{q_1q_2} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{|\mathbf{r}|} = q_1 \underbrace{\frac{q_2}{4\pi\varepsilon_0|\mathbf{r}|}}_{\text{Coulomb potential}} = q_1 \underbrace{V_{q_2}}_{\text{Coulomb potential}}$$

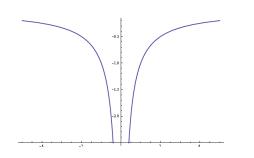
Examples:

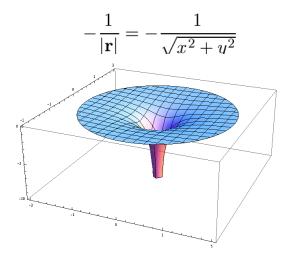
In one dimension

In 2 dimensions

In 3 dimensions



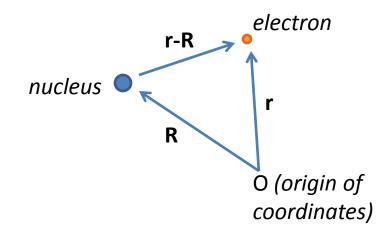




 $-\frac{1}{|{\bf r}|}=-\frac{1}{\sqrt{x^2+y^2+z^2}}$

- Difficult to visualise (would require a 4dimensional plot!)
- We live in a 3-dimensional world so this is the potential we use

Hamiltonian for Hydrogen atom



nuclear kinetic energy electronic kinetic energy electron-nucleus

$$\hat{H} = -\frac{\hbar^2}{2M} \left(\frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} + \frac{\partial^2}{\partial Z^2} \right) - \frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) - \frac{1}{4\pi\varepsilon_0} \frac{e^2}{|\mathbf{r} - \mathbf{R}|}$$

$$\hat{H} = -\frac{\hbar^2}{2M} \nabla_{\mathbf{R}}^2 - \frac{\hbar^2}{2m} \nabla_{\mathbf{r}}^2 - \frac{1}{4\pi\varepsilon_0} \frac{e^2}{|\mathbf{r} - \mathbf{R}|}$$

CHEM3023 Spins, Atoms and Molecules

School of Chemistry

Atomic units

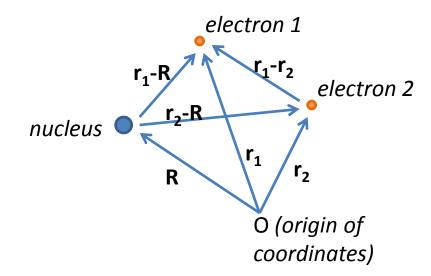
They simplify quantum chemistry expressions. E.g.:

In SI units:
$$\hat{H} = -\frac{\hbar^2}{2M} \nabla_{\mathbf{R}}^2 - \frac{\hbar^2}{2m} \nabla_{\mathbf{r}}^2 - \frac{1}{4\pi\varepsilon_0} \frac{e^2}{|\mathbf{r} - \mathbf{R}|}$$

$$n \text{ atomic units:} \quad \hat{H} = -\frac{1}{2M} \nabla_{\mathbf{R}}^2 - \frac{1}{2} \nabla_{\mathbf{r}}^2 - \frac{1}{|\mathbf{r} - \mathbf{R}|}$$

Quantity	Atomic Unit	Value in SI
Energy	ħ²/m _e a ₀ (Hartree)	4.36 x 10 ⁻¹⁸ J
Charge	е	1.60 x 10 ⁻¹⁹ C
Length	a ₀	5.29 x 10 ⁻¹¹ m
Mass	m _e	9.11 x 10 ⁻³¹ kg

Hamiltonian for Helium atom



$$\begin{split} \hat{H} &= -\frac{1}{2M} \nabla_{\mathbf{R}}^2 - \frac{1}{2} \nabla_{\mathbf{r_1}}^2 - \frac{1}{2} \nabla_{\mathbf{r_2}}^2 - \frac{2}{|\mathbf{r_1} - \mathbf{R}|} - \frac{2}{|\mathbf{r_2} - \mathbf{R}|} + \frac{1}{|\mathbf{r_1} - \mathbf{r_2}|} \\ & \underset{\text{energy of nucleus}}{\overset{\text{kinetic}}{\underset{\text{electron 1}}{\underset{\text{electron 2}}{\underset{\text{electron 2}}{\underset{\text{nucleus}}{\underset{\text{nucleus}}{\underset{\text{electron 1}}{\underset{\text{electron 2}}{\underset{\text{nucleus}}{\underset{\text{nucleus}}{\underset{\text{electron 1}}{\underset{\text{and 2}}{\underset{\text{and 3}}{\underset{\text{and 3}}{\underset{and 3}}{\underset{and 3}}}}}}}}}}}}}}}}}}}}}}}$$

Sums \sum

- Extremely useful shorthand notation
- Allows to condense summations with many terms (5, 10, 100, many millions, infinite!) into one compact expression

Single sum example:

$$q_1\mathbf{r}_1 + q_2\mathbf{r}_2 + q_3\mathbf{r}_3 = \sum_{n=1}^3 q_n\mathbf{r}_n$$

Double sum example:

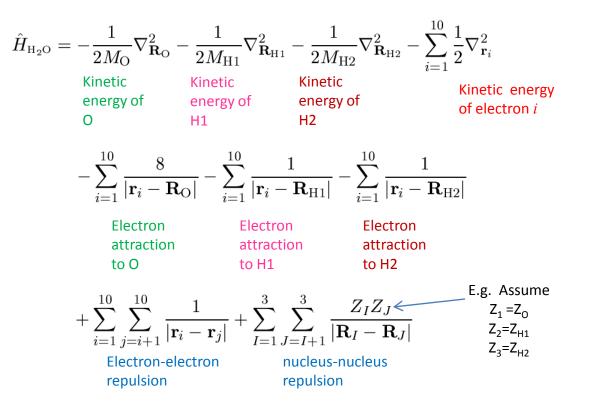
$$(x_1 - y_1) + (x_1 - y_2) + (x_1 - y_3) + (x_2 - y_1) + (x_2 - y_2) + (x_2 - y_3)$$

$$= \sum_{i=1}^{3} (x_1 - y_i) + \sum_{j=1}^{3} (x_2 - y_j)$$
$$= \sum_{k=1}^{2} \sum_{i=1}^{3} (x_k - y_i)$$

CHEM3023 Spins, Atoms and Molecules

Hamiltonian operator for water molecule

Water contains 10 electrons and 3 nuclei. We will use the symbols "O" for the oxygen (atomic number $Z_0=8$) nucleus, "H1" and "H2" (atomic numbers $Z_{H1}=1$ and $Z_{H2}=1$) for the hydrogen nuclei.



- Quite a complicated expression! Hamiltonians for molecules become intractable
- Fortunately, we do not need to write all this for every molecule we study. We can develop expressions that are much more compact and apply to any molecule, irrespective of size

Summary / Reading assignment

- Bra-ket notation (Atkins, page 16)
- Rules for writing operators in quantum mechanics, constructing molecular Hamiltonian operators (Cramer, page 106)
- Atomic units (Cramer, page 15)

