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� Introduction to MCMC, especially for

computation in Bayesian Statistics.

� Basic recipes, and a sample of some

techniques for getting started.

� No background in MCMC assumed.

� Not for experts!

aIn close association with Gareth Roberts
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Bayesian Inference

Data: (realisation � )

Parameters, latent variables:� � ���
	��
����������� �
�
���
Likelihood: � � � � � �
Prior: � � ��� �

Inference is based on the joint posterior

� ��� ��� � � � � �"! � #%$'& � � #( � � �"! � #%$'& � � #*)
�
+ � � � � � � � � ��� �

, �.-/� 0
1324-�5 , 0�5 + � ,76 -�8 ,79 0:0:; < 5 , 0�5
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Example 1

Let
	�������� � > ?A@B?A@ ) @C ���D�FE'�

and

� � ���/� � 	$ � 	HG IKJ # �
Posterior:

� ��� ��� � + LNMPO Q RSUTDV � � S�W I # J� < 		HG IKJ
+ LNMPO Q > � I W X� # J� < 		HG IKJ �

Things of interest to Bayesians:

� Posterior Mean = Y ��� ��� �
.

� Posterior Variance = var
��� ��� �

.

� Credible interval Z"[ � � �\�^]_� � �
`
for

�
s.t.5 Z"[ � � � a � a ]:� � � ��� ` � bc�edgf
.
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Example 2

Data
	�������� � >

are a random sample

from
�ji �lk � �

. Non-informative prior is:

� �ji �lk � � + E
k � �

Joint posterior:

� �mi �^k � �n� � + o 	p Jrq >_st�KG 	
< LuMcO Q � � S�W v # J� p J

which is not of standard from.
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General problem: evaluating

Y $ y 9 � �{z � 9 �m| � � �j| �};~|
can be difficult. ( � 9 �m| � �n� �m| �};g| a �

).

However, if we can draw samples

� 	 # � � � # ������� � ��� # C � �j| �
then we can estimate

Y $ y 9 � �{z � �9 � � E �
��� 	 9 � � # �

This is Monte Carlo (MC) integration

Changed notation:� � | � � ��� � � � � �m| �

�



Consistency

For independent samples, by Law of Large

numbers,

�9 � � E �
��� 	 9 � � #

� Y $ y 9 � �{z
as

� � �
(1)

But independent sampling from � �j| �
may

be difficult.

It turns out that (1) still applies if we

generate samples using a Markov chain.

But first, some revision of Markov chains.
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A Markov chain is generated by sampling

� � G 	 # C � �m| � | � � # �\�t2 � E:����������� ��
� is the transition kernel.

So
� � G 	 #

depends only on
� � #

, not on� � # � � 	 # ������� � � � W 	 #
.

� � � � G 	 # � | � � # ��| � � W 	 # �������
� � � � � � G 	 # � | � � # �
For example:

� � G 	 # � | � � # C ��bP��f | � � # �FE_��b����
This is called a first order auto-regressive

process with lag-1 auto-correlation 0.5
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Simulation of the chain:� � G 	 # � | � � # C ��bc��f | � � # �FE:�eb��
.

Two different starting points are used.
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After about 5–7 iterations the chains

seemed to have forgotten their starting

positions.
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Stationarity

As
2 � �

, the Markov chain

converges to its stationary distribution.� �
in distribution

or invariant

In the above example, this is

� � # � | � � # C ��bP��bP�FE_���������
as

2 � �
which does not depend on

| � � #
.

Does this happen for all Markov chains?

�\�



Irreducibility

Assuming a stationary distribution exists, it

is unique if the chain is irreducible.

Irreducible means any set of states can be

reached from any other state in a finite

number of moves.

An example of a reducible Markov chain:

Suppose � �m| ��� � � b
for

| � �
and

� �
and vice versa.

A

B
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Aperiodicity

A Markov chain taking only finite number of

values is aperiodic if greatest common

divisor of return times to any particular

state
,

say, is 1.

� Think of recording the number of steps

taken to return to the state 1. The g.c.d.

of those numbers should be 1.

� If the g.c.d. is bigger than 1, 2 say, then

the chain will return in cycles of 2, 4, 6,

... number of steps. This is not allowed

for aperiodicity.

� Definition can be extended to general

state space case.

� h



Ergodicity

Assume the Markov chain:

� has the stationary distribution � �m| �
� is aperiodic and irreducible.

then we have an ergodic theorem:

�9 � � E �
�A� 	 9 � � #

� Y $ y 9 � �{z
as

� � �
�9 � is called an ergodic average.

Also for such chains withk �� �
var

$ y 9 � �{z a �
� the central limit theorem holds and

� convergence occurs geometrically.

�\w



Numerical standard errors (nse)

The nse of
�9 � is var

$ � �9 � �
, and for

large

nse o �9 � q � ¡¢¢ k �� E £ � � W 	
¤ � 	 ¥ ¤ � 9 �

where ¥ ¤ � 9 �
is the lag-

8
auto-correlation in9 � � � # �

.

� In general no simpler expression exist

for the nse.

� See Geyer (1992), Besag and Green

(1993) for ideas and further references.

��x



� If
9 � � � # �

can be approximated as

a first order auto-regressive process

then

nse o �9 � q � k �� E £ ¥E Q ¥
�

where ¥ is the lag-1 auto-correlation of9 � � � # �
.

� The first factor is the usual term under

independent sampling.

� The second term is usually ¦ 1.

� And thus is the penalty to be paid

because a Markov chain has been

used.

� �



Moreover,

� the nse may not be finite in general.

� it is finite if the chain converges

geometrically

� If the nse is finite, then we can make it

as small as we like by increasing .

� the ‘obvious’ estimator of nse is not

consistent.

See later.
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Markov chains – summary

� A Markov chain may have a stationary

distribution.

� The stationary distribution is unique if

the chain is irreducible.

� We can estimate nse’s if the chain is

also geometrically convergent.

Where does this all get us?
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How do we construct a Markov chain

whose stationary distribution is our target

distribution, � �j| �4§
Metropolis et al (1953) showed how.

The method was generalized by Hastings

(1970).

This is called

Markov chain Monte Carlo (MCMC).

�r�



Metropolis-Hastings algorithm

At each iteration
2

Step 1 Sample � C ¨ o � � | � � # q �� �
“candidate” point

“Proposal” distribution

Step 2 With probability

© �j| � � # � � � � ª «­¬ E:� � � � � ¨ o | � � # �n� q
� o | � � # q ¨ o � � | � � # q

set | � � G 	 # � � (acceptance)
�

else set

| � � G 	 # � | � � #
(rejection)

�
�F�



Note that:

� The normalising constant in � �j| �
is not

required to run the algorithm. It cancels

in the ratio.

� If ¨ � � � | � � � � � �
, then we obtain

independent samples.

� Usually ¨ is chosen so that ¨ � � � | �
is

easy to sample from.

� Theoretically, any density ¨ �7® � | �
having

the same support should work.

However, some ¨ ’s are better than

others. See later.

� The induced Markov chains have the

desirable properties under mild

conditions on � �j| �
.

��=



Implementing MCMC

� Flavours of Metropolis-Hastings

� Gibbs Sampler

� Number of Chains

� Burn-in and run length

� Numerical standard errors

� h



The Metropolis algorithm

Proposal is symmetric:

¨ �j| �n� � � ¨ � � � | �
– as proposed by Metropolis et al. (1953).

Special case: Random-walk Metropolis

¨ �j| �n� � � ¨ � ��� Q | � �\�
In this case:

© �m| � � # � � � � ª «¯¬ E_� � � � �
� o | � � # q

�Fw



Example:

� �m| � + LuMcO Q ° J�
¨ � � � | � + LuMcO Q � � W ° # J� � � @�± # J
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target
²

Proposal depends on where you are.
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The Independence Sampler

Proposal does not depend on
|

:

¨ � � � | � � ¨ � � �

So © �m| � � �
has a simpler form.

Beware: Independence samplers are

either very good or very bad.

Tails of ¨ � � �
must be heavier than tails of

� �j| �
for geometric convergence.
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Return to the Normal-Cauchy example.

Example 1: Let	�������� � > C , � , ��; � ���D�FE'�
and

� � ���/� � 	$ � 	HG IKJ # �
Posterior:

� ��� ��� � + LNMPO Q · � � Q �� � �
� < E

E £ � � �

Suppose · � �_b
, �� � bP��b�¸�¹rf

. With the
|

notation we have

� �j| � + LNMPO Q · � | Q bP�eb
¸�¹rf � �
� < E

�tE £ | � � �

���



Example continued...

Let ¨ � � � | � � 	$ � 	HG � J # .

Running the independence sampler gives:
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8

True.mean M.mean nse lag-1.cor

0.0620 0.0612 0.006 0.172
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� Flavours of Metropolis-Hastings

� Gibbs Sampler

� Number of Chains

� Burn-in and run length

� Numerical standard errors
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Gibbs sampling

Suppose that
| � �j| 	���| �º������� ��| »¼�

is6 � �/�
dimensional.

Gibbs sampler uses what are called the full

(or complete) conditional distributions:

� �m|�½ � | 	 ������� ��|�½ W 	 ��|�½ G 	 ������� ��| »¼�
� � �m| 	�������� ��| ½ W 	���| ½ ��| ½ G 	3������� ��| » �

� �m| 	�������� ��| ½ W 	���| ½ ��| ½ G 	3������� ��| » �};g| ½ �
Note that the conditional

� �m| ½ � | 	�������� ��| ½ W 	3��| ½ G 	3���%�%�­��| »º�
is proportional to the joint. Often this helps

in finding it.

=��



Gibbs sampling

Sample or update in turn:

� � G 	 #	 C � �m| 	 � | � � #� �K| � � #¾ ��®�®�® �K| � � #» �
� � G 	 #� C � �m| � � | � � G 	 #	 ��| � � #¾ ��®�®�® ��| � � #» �
� � G 	 #¾ C � �m| ¾ � | � � G 	 #	 ��| � � G 	 #� ��| � � #¿ ��®�®�®
�
...

...
...� � G 	 #» C � �m| » � | � � G 	 #	 ��| � � G 	 #� ��®�®�® ��| � � G 	 #» W 	 �

Always use the most recent values.

=��



Thus in two dimensions
� 6 � �/�

, the

sample path of the Gibbs sampler will look

something like:
PSfrag replacements
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Example 2.

Let ? ?A@B?A@ )C �ji �lk � �
and � �ji �lk � � + 	p J �

We had:

� �mi �^k � �n� � + o 	p Jrq >_st�KG 	
< LuMcO Q � � S�W v # J� p J

Let Ê � E'Ë¼k �
. Easy to derive:

� �ji � k � � � � � � �� �lk � Ë · �
� � Ê � i � � � � Ì > � � 	� � � ? Q i � �

= h



Sampling from full conditionals

We must be able to sample from

� �m| ½ � | 	�������� ��| ½ W 	3��| ½ G 	3������� ��| » �
to do Gibbs sampling.

In real problems, full conditionals often

have complex algebraic forms, but are

usually (nearly) log-concave.

For (nearly) log-concave univariate

densities, use adaptive rejection sampling

(Gilks and Wild, 1992) and follow-ups.

They have codes (C and Fortran)

available from

www.mrc-bsu.cam.ac.uk

=�w



� Flavours of Metropolis-Hastings

� Gibbs Sampler

� Number of Chains

� Burn-in and run length

� Numerical standard errors
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How many parallel chains of MCMC should

be run ?

Experiment yourself.

� Several long runs (Gelman and Rubin,

1992)

– gives indication of convergence

– A sense of statistical security.

� one very long run (Geyer, 1992)

– reaches parts other schemes

cannot reach.

= �



� Flavours of Metropolis-Hastings

� Gibbs Sampler

� Number of Chains

� Burn-in and run length

� Numerical standard errors
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Early iterations
| � 	 # ������� ��| ��Í #

reflect

starting value
| � � #

.

These iterations are called burn-in.

After the burn-in, we say the chain has

‘converged’.

Omit the burn-in from ergodic averages:

�9 Í � � E
Q

�
�A� Í G 	 9 � � # �

Methods for determining are called

convergence diagnostics.

=F�



Convergence Diagnostics

Must do:

� Plot the time series for each quantity of

interest.

� Plot the auto-correlation functions.

If not satisfied, try some other diagnostics.

See for example:

Gelman and Rubin (1992), Robert (1998),

Cowles and Carlin (1996) Brooks and

Roberts (1998).

But realise that you cannot prove that you

have converged using any of those.

h �
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Suppose we decide to run the chain until

nse o �9 Í � q
is sufficiently small.

For a given run length , how can we

estimate the nse, taking account of

auto-correlations in

9 �ÎÍ G 	 # ������� � 9 �Ï� #

h �



In the method of batching, the problem of

auto-correlation is overcome by

� dividing the sequence| �ÎÍ G 	 # ������� ��| �Ï� #
into

6
equal-length batches,

� calculating the mean
]}½

for each batchÐ
,

� checking that the]F	�������� �^]Ñ»
are approximately uncorrelated.

Then we can estimate

Ò
nse

� �| Í � � � E
6 � 6 Q E'� ��] ? Q � ]3� � �

h =



Notes:

� Use at least 20 batches.

� Estimate lag-1 autocorrelation of the

sequence Z ] ? ` .

� If the auto-correlation is high, a longer

run should be used, giving larger

batches.

hFh



Again return to Example 2.

Let Ó �� � >
? � 	 � � ? Q �� � �

. It is easy to

find analytically:

�ji �n� � � �� and
��k � ��� � � Ó ��

· Q � �

Take
� �_b
b�bP� � Ë�Ô

.

T.mean G.mean nse lag-1.ci
5.0675 5.0624 0.0046 0.104k �
0.6306 0.6367 0.0062 0.097

h w



When we come back after the break...

� Study Convergence

� Learn Graphical Models

� See BUGS illustrations.

� Do Bayesian Model Choice

� Perform Reversible Jump

� Adapt MCMC Methods
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