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e Introduction to MCMC, especially for Outline:
computation in Bayesian Statistics. e [ Motivation
e Basic recipes, and a sample of some e Monte Carlo integration

techniques for getting started. .
e Markov chains

e No background in MCMC assumed.
e MCMC
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Bayesian Inference

Data: Y (realisation ¥)

Parameters, latent variables:

0 = (01,02,...,0,)
Likelihood: L(y|0)

Prior: 7o ()

Inference is based on the joint posterior

1.€.

_ L(y|0)m0(0)
m(8ly) = [ L(y|0)m0(0)d0

o< L(y|@)mo(0)

Posterior o« Likelthood X Prior

Example 1

LetY1,..., Y, S N(6,1) and
m(0) = sie-
Posterior:

n _0\2
T(0ly) mx@TME% 9) Wx 1

%||w
X mxwﬁliw X .Tm%.

Things of interest to Bayesians:
e Posterior Mean = E(f|y).
e Posterior Variance = var(6|y).

e Credible interval {a(y), b(y)} for 0 s.t.
Pr{a(y) <0 < b(y)|ly} =0.95.



Example 2

Data Y7, ... , Y, are arandom sample

from N (1, 0%). Non-informative prior is:

1
M —
w(p, 0%) 3

Joint posterior:
1 B\M+H
(72)

m(p, o?ly)
X mN@AlMUAW&QIMENW

which is not of standard from.
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Consistency

General problem: evaluating
For independent samples, by Law of Large

E:[h(X)] = | h(x)r(z)dx numbers,

can be difficult. ( [ |h(z)|m(x)dx < c0). Iy 1 Sh ANSV

However, if we can draw samples
— E;[h(X)] as N — 00.(2)

XU x®@ o xWN) o)
But independent sampling from 7 () may
then we can estimate be difficult.

_ 1 X
E.[h(X)] ~ hy HMMM A v

This is Monte Carlo (MC) integration

. It turns out that (1) still applies if we
Changed notation:

0=z 7(0|Y)=mn(x)

generate samples using a Markov chain.

But first, some revision of Markov chains.
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A Markov chain is generated by sampling

XU~ p(zfa™), t =1,2,.

P is the transition kernel.

So X (t+1) depends only on X® not on
xO0 x@ 0 xt-1,

@Cﬁ?r: _&SV LD ) = EN@LLV _&Sv

For example:

XD |20 ~ N (0.5 2M,1.0).

This is called a first order auto-regressive

process with lag-1 auto-correlation 0.5
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Simulation of the chain:
X120 ~ N(0.5 2, 1.0).

Two different starting points are used.

After about 5—7 iterations the chains
seemed to have forgotten their starting

positions.
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Stationarity

As t — 00, the Markov chain

converges to its stationary distribution.

q

in distribution . .
or invariant

In the above example, this is
X020 ~ N(0.0,1.33), as t — o0

which does not depend on 2(0),

Does this happen for all Markov chains?

12



Irreducibility

Assuming a stationary distribution exists, it

is unique if the chain is irreducible.

Irreducible means any set of states can be
reached from any other state in a finite

number of moves.
An example of a reducible Markov chain:

Suppose p(z|y) = 0 forx € A and

y € B and vice versa.

O,

13

Aperiodicity

A Markov chain taking only finite number of
values is aperiodic if greatest common
divisor of return times to any particular

state ¢ say, is 1.

e Think of recording the number of steps
taken to return to the state 1. The g.c.d.

of those numbers should be 1.

e If the g.c.d. is bigger than 1, 2 say, then
the chain will return in cycles of 2, 4, 6,
... humber of steps. This is not allowed

for aperiodicity.

e Definition can be extended to general

State space case.
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Ergodicity

Assume the Markov chain:
e has the stationary distribution 7 ()
® is aperiodic and irreducible.

then we have an ergodic theorem:

oy = LS (x®
v oy h(XY)

— E;[h(X)] asN — oc.

mZ is called an ergodic average.

Also for such chains with
o7 = vary[h(X)] < 00
e the central limit theorem holds and

® convergence occurs geometrically.

15

Numerical standard errors (nse)

The nse of Ay is \/vary (hy ), and for

large NV
- Q.w N—1
nse (hy) ~ % 1+2 MU pi(h)
=1

where p;(h) is the lag-l auto-correlation in
(h(x)),
e In general no simpler expression exist

for the nse.

e See Geyer (1992), Besag and Green

(1993) for ideas and further references.
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o If {H(X®)} can be approximated as

a first order auto-regressive process

then Moreover,
SN Qw 1+p e the nse may not be finite in general.
- P e it is finite if the chain converges
where p is the lag-1 auto-correlation of geometrically
(t)
T@AN vw e |f the nse is finite, then we can make it
e The first factor is the usual term under as small as we like by increasing V.

independent sampling. e the ‘obvious’ estimator of nse is not

e The second term is usually > 1. consistent.

e And thus is the penalty to be paid See later.
because a Markov chain has been

used.
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Markov chains — summary

e A Markov chain may have a stationary

distribution.

e The stationary distribution is unique if

the chain is irreducible.

e \We can estimate nse’s if the chain is

also geometrically convergent.

Where does this all get us?

19
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How do we construct a Markov chain
whose stationary distribution is our target

distribution, 7(x)?
Metropolis et al (1953) showed how.

The method was generalized by Hastings
(1970).

This is called

Markov chain Monte Carlo (MCMC).

21

Metropolis-Hastings algorithm
At each iteration ¢

Step 1 Sample y ~ ¢ ( _&@

_,omsgw co_:ﬁ/

“Proposal” distribution

Step 2 With probability

a(z®,y) = min{ 1,

set
&@iv — y (acceptance),
else set

&@Ln: = HS (rejection).
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Note that:

e The normalising constant in () is not
required to run the algorithm. It cancels

in the ratio.

Implementing MCMC

e If ¢(y|z) = m(y), then we obtain

independent samples.

e | Flavours of Metropolis-Hastings

e Usually g is chosen so that ¢(y|z) is
e Gibbs Sampler
easy to sample from.

e Theoretically, any density ¢(-|x) having ® Number of Chains

the same support should work. e Burn-in and run length
However, some @’s are better than

e Numerical standard errors
others. See later.

e The induced Markov chains have the
desirable properties under mild

conditions on ().
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The Metropolis algorithm

Proposal is symmetric:

q(rly) = q(yl|r)

— as proposed by Metropolis et al. (1953).

Special case: Random-walk Metropolis

q(zly) = q(ly — =|).

In this case:

25

Example:
2
w(xr) o exp Ia@%

q(ylr) o< exp

—
[\V]
—~~
[@n]
ot
N—r
©

08

proposals| /

0.6

0.4

0.2

0.0

Proposal depends on where you are.

26




The Independence Sampler

Proposal does not depend on z : Return to the Normal-Cauchy example.

q(y|z) = q(y) Example 1: Let
Yi,...,Y, ~i.4.d.N(0,1) and

Soal(x has a simpler form. . 1

Beware: Independence samplers are Posterior

either very good or very bad.
o ' n(0—y)?*\ 1

. . . w(0ly) x exp § — X ———.

Tails of ¢(y) must be heavier than tails of 2 146

7 (x) for geometric convergence.
Suppose n = 20, gy = 0.0675. With the x

notation we have

04

03

n(r — 0.0675)? 1

m(r) x expq — > X 17

02

01

00
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Example continued...

Let q(y|z) = 7

1

14+y2)"

Running the independence sampler gives:

02 04 06 08

0.0

-0.2

0.4

-0.6

o 200

400 600

800

1000

Flavours of Metropolis-Hastings

Gibbs Sampler

True.mean

M.mean

nse

lag-1.cor

X 0.0620

0.0612

0.006

0.172
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Number of Chains
Burn-in and run length

Numerical standard errors
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Gibbs sampling

Suppose that x = (21, 2, ... ,Tk) is
k(> 2) dimensional.

Gibbs sampler uses what are called the full

(or complete) conditional distributions:

ﬁ.AHu_&.T cee 3 i1, Lj41,y- - - v.&wv

ﬁ.A&T v 3 i1, L5y Lj41y - u&wv

[m(z1,. . xj—1, %5, Tj1, ... ,Tk)dT;

Note that the conditional

ﬁ.?@._&f cer 3 Lj—1,L541, vav

is proportional to the joint. Often this helps

in finding it.

31

Gibbs sampling

Sample or update in turn:

»X%T_.C ~ ﬁ.A&.H &.m&u &WSV Tt UHMSV
N%iv ~ (22 &%iﬁ&%ﬁ o %MJ
N%tv ~ 7(xs &%iv%mtvémv“ )
N\Mtj: N i&»_&%iﬁamiv“ o uﬁmﬁcv

Always use the most recent values.

32



Example 2.
1.2.d

Thus in two dimensions (kK = 2), the

sample path of the Gibbs sampler will look LetY; ~" N(u,0?)and7w(u,0?) o W
Hmmo:;mﬁ:_:@ like: We had:
) 2+1
. wmoly) o ()"
(3 X  exp ﬁl M%wwlmzvm W
oL
o (1)
" Let 7 = 1/0?. Easy to derive:
x 2)s
m(ulo®y) = N(g,0%/n)
S n 1
. r(rlny) = T (535w -w?)

33 34



Sampling from full conditionals

We must be able to sample from

ﬁ.A&.m_&Hu cee 3 Lj—1,Lj41,- - - vmm\av
to do Gibbs sampling.

In real problems, full conditionals often
have complex algebraic forms, but are

usually (nearly) log-concave.

For (nearly) log-concave univariate
densities, use adaptive rejection sampling
(Gilks and Wild, 1992) and follow-ups.

They have codes (Cand Fort r an)

available from

www.mrc-bsu.cam.ac.uk

35

Flavours of Metropolis-Hastings

Gibbs Sampler

Number of Chains

Burn-in and run length

Numerical standard errors
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How many parallel chains of MCMC should

be run ?

Experiment yourself.

e Several long runs (Gelman and Rubin,
1992)

— gives indication of convergence

— A sense of statistical security.

e one very long run (Geyer, 1992)

— reaches parts other schemes

cannot reach.

37

Flavours of Metropolis-Hastings
Gibbs Sampler

Number of Chains

Burn-in and run length

Numerical standard errors
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M)

Early iterations HEU Ce U&A reflect

starting value 20,
These iterations are called burn-in.

After the burn-in, we say the chain has

‘converged'.

Omit the burn-in from ergodic averages:

N

i = 7 O h (X)),

t=M+1

Methods for determining M are called

convergence diagnostics.

39

Convergence Diagnostics

Must do:

e Plot the time series for each quantity of

interest.
e Plot the auto-correlation functions.

If not satisfied, try some other diagnostics.

See for example:

Gelman and Rubin (1992), Robert (1998),
Cowles and Carlin (1996) Brooks and
Roberts (1998).

But realise that you cannot prove that you

have converged using any of those.

40



Suppose we decide to run the chain until

Flavours of Metropolis-Hastings nse Amizv
Gibbs Sampler is sufficiently small.
Number of Chains For a given run length NV, how can we

Burn-in and run length estimate the nse, taking account of

auto-correlations in

h ANEEV . ANEV

Numerical standard errors
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In the method of batching, the problem of

auto-correlation is overcome by

e dividing the sequence

L(M+1) (V)

N
Notes:

into k£ equal-length batches,
e Use at least 20 batches.

e calculating the mean F. for each batch

i e Estimate lag-1 autocorrelation of the

sequence {b; }.
e checking that the
e |f the auto-correlation is high, a longer

bi,.... by

run should be used, giving larger

are approximately uncorrelated. batches.

Then we can estimate

e (Zarn) = i S (b — b2
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Again return to Example 2. When we come back after the break...

Let mw => " (yi— y)?. Itis easy to e Study Convergence

find analytically: e Learn Graphical Models

S? . .
E(uly) = 7 and NAQM_QV — §||@w e See BUGS illustrations.
e Do Bayesian Model Choice
Take N = 2000, M = N/4.
e Perform Reversible Jump
T.mean | G.mean nse lag-1.c * Adapt MCMC Methods
5.0675 | 5.0624 | 0.0046 | 0.104
0.6306 | 0.6367 | 0.0062 | 0.097
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