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SUMMARY

The problem of determining the unknown number of components in mixtures is of considerable
interest to researchers in many areas. This paper generalizes a Bayesian testing method based on
the Kullback-Leibler distance proposed by Mengersen and Robert (1996). An alternative, weighted
Kullback-Leibler distance is proposed as testing criterion. Explicit formulas for this distance are given
for a number of mixture distributions. A step-wise testing procedure is proposed to select the minimum
number of components adequate for the data. A fast, collapsing approach is proposed for reducing
the number of components which does not require full re-fitting at each step. The method, using both
distances, is compared to the Bayes factor approach. The method is easy to implement and is illustrated

using BUGS (a general purpose software for Bayesian analysis).
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1 Introduction

Consider a family of probability density functions of the form
k
F® (@) =Y w;fi(=6;), (1)
j=1

where the density f;(x|;) is given and parameterized by #; and the weights w;, summing to 1. The
density f;(z|6;) may also depend on additional parameters and for notational convenience we will write
f; for f;(x|6;) when the context is clear. Although we can work with different functional forms for
the densities f;(z|-), in this article we restrict ourselves to the case where the functional forms of the
fj»3 =1,...,k are same. We observe Xi,...,X,, a random sample of size n from (1). In this paper

we allow the possibility of multi-dimensional observations as well.

We consider the problem of estimating k. In exploratory studies we will often be interested in a
parsimonious explanation of the data and would be especially interested in identifying the smallest &
that will nevertheless adequately explain the structure of the data. It is this particular problem that is

the focus of this paper.

In classical non-Bayesian statistics this problem is non standard and is not straightforward. At
first sight it might be thought that the problem is readily handled by Bayesian methods by calculating

the posterior distribution for k. However, even here the problem is not straightforward because certain



parameter combinations give rise to ambiguous k values making correct identification of k difficult. For

example one component can be equally well, but unnecessarily, represented by two components:

wi fr.(2|0k) = w, fe(2|0r) + (wr, — wy) fr(x]0k)-

In general there is no guarantee that the posterior distribution will not give probability mass to such
two component representations of what is actually just one component. Thus the posterior distribution

of k needs careful interpretation.

A commonly used approach by both Bayesians and non-Bayesians is the reductive stepwise-method.
Here an initial £ = ko (> 1) component mixture, f(¥0) is fitted to the data set where the value of ko is
assumed to be more than adequate. The value of k is then progressively reduced until the fit is judged

to be no longer acceptable. At any given stage, assuming f(*) is acceptable, the procedure is to

Step 1: Fit a k — 1 component mixture, f(=1).

Step 2: Compare f%*~1) with f*) using a test of hypothesis to see if the reduced fit is still adequate.

These two steps are repeated until a reduction no longer gives an acceptable fit.

In the Bayesian approach, the Bayes factor is often used as the selection criterion for determining
adequacy of the fit. See for example, Carlin and Chib (1995), Chib (1995), Raftery (1996) and Ishwaran
et al. (2001). Other variants of the Bayes factor have also been considered for model selection in mixture
settings. Dey et al. (1995) propose the use of pseudo-Bayes factor (Geisser and Eddy, 1979; Gelfand
and Dey, 1994).

The calculation of the Bayes factor is usually difficult and requires rather elaborate numerical algo-
rithms. The variable dimensional approach of Richardson and Green (1997) is not straightforward to
implement in general mixture settings. The approaches based on the output of the MCMC algorithms
to calculate the marginal likelihood (Chib, 1995) and hence the Bayes factor (Raftery, 1996), Roeder
and Wasserman (1997) perform poorly, though improvements can be made by combining simulation

and asymptotic approximations, see for example DiCiccio et al. (1997).

An interesting alternative is to use a distance measure to compare two distributions. For non-
Bayesian approaches see e.g. Chen and Kalbfleisch (1996) and James et al. (2001). Mengersen and
Robert (1996) have proposed the Kullback-Leibler (KL) distance. The KL distance is not a proper
metric in the strict distance metric sense. However, it is generally recognized to be a convenient
quantity for measuring the ‘closeness’ between distributions, so we shall in this paper use the term
‘distance’ in this informal sense. Although there are many possible distance measures between two
densities available in the literature, the KL distance measure is attractive because of its simplicity and
analytical tractability for mixtures of commonly used exponential family models, as we demonstrate

here.



Our method is based on that of Mengersen and Robert, but in an unusual form. Our proposed

version contains a modification to each of the previously described Steps 1 and 2.

Firstly, we note that a full re-fitting in Step 1 is not necessary for the following reason. Suppose that
the data genuinely arises from a k; (< ko) component mixture. Then additional components will not
represent true structure. Moreover, they will not significantly disturb or alter the fit of the k1 component
model. The only difficulty is the case mentioned previously where more than one component has been

unnecessarily employed to explain what is really just one component.

The above consideration indicates that at an intermediate stage (where k1 < k < ko) then k; of
the components will correspond to the true distribution and the remaining components correspond
essentially to chance fluctuations. We do not therefore need to carry out a full re-fit in seeing if (k — 1)
components are adequate. Instead we consider whether merging of two components in f(*) significantly
worsens the fit. This merging operates by selecting two components from f(*) and replacing them by
one component. The parameters of this component are recalculated, but the other (k —2) components
and their weights are kept fized. We call such a reduced fit a collapsed version of f*) and denote it
by f*ig.’;_l), with the subscripts ij indexing one of the *Cy possible pairs of components that could be
merged. Amongst all these collapsed versions we select the one whose distance (in a sense to be defined)
from f(¥) is smallest. We call this the best collapsed version and denote it by f*(*—1)_ Its distance from

f*) is denoted by d(f*), f*(k=1)),

Once the best collapsed version is selected in this way we then have to decide if the fit is still
adequate. A Bayesian test of hypothesis, based on the distance criterion, entails calculation of the
posterior probability that d(f*), f*(*=1)) is less than a pre-specified value. (A small value of this
probability indicating that the two components in f(¥) can be collapsed without significantly worsening
the fit.). If the KL distance is used for d(-, -) then this posterior probability can be expensive to calculate.
Our second suggested modification is therefore to use an alternative distance criterion, still based on
the KL distance, but that is much easier to calculate. The behavior of the test using this alternative
distance measure is very similar to when the original KL distance is used, but it greatly reduces the

computational effort to carry out the test of hypothesis.

In the overall method, we start with a reasonably large value of k, and reduce the number of
components sequentially by collapsing until no further collapsing can be done without significant loss
in the fit. A fresh fitting of the model with each reduction in the value of & is thus avoided. However,
parameter estimates under a model with a smaller number of mixture components are more accurate
in general. Hence a re-fit of the mixture model at the final step is advocated in order to ensure that the
final posterior distribution has been unambiguously identified and that no further reduction is possible

without loss of quality of fit.

In summary, the main contributions of the current article are as follows.



e We use accurate calculations (based on numerical quadratures) of the KL distance between f(*)
and its collapsed version. This is in contrast to the Laplace approximations obtained by Mengersen

and Robert (1996) which are only valid under suitable conditions.

e We also propose, as an alternative, an easy to implement weighted KL distance, with similar

properties to the KL distance.

e We provide a step-wise method to determine k using a collapsing method to reduce the number
of mixture components at each step. This method is generally applicable, fast and easy to imple-
ment in many mixture settings including multivariate normal mixtures and mixtures of gamma

distributions.

It is well known that the Bayes factors choose the correct model under suitable assumptions asymp-
totically. The proposed method also enjoys the same property of consistency. In order to show this we
need to consider consistency of the posterior distribution for the parameters of the mixture model f(),
since the distance is a function of the parameters under the mixture model. We prove the consistency
of the proposed method in a separate paper (submitted elsewhere) since the proof is rather elaborate

and technical.

The remainder of the paper is organized as follows. Section 2 develops the general testing procedure.
Section 3 contains a number of mixture examples and provides expressions for the weighted KL distance
in each case. We give numerical illustrations in Section 4. In Section 5 we conclude with a few summary

remarks.

2 General Formulation

2.1 Test Procedure
Our proposed test procedure consists of the following five steps labelled T1 to T5.

T1 Select an initial ko and fit a kg component (Bayesian) mixture model, f{*) to the data. It is

assumed that kg is definitely large enough to explain all the structure of the data.

Set k = ko.

T2 Calculate the distances d(f*), f(*ig.lifl)) between f(¥) and each of its ¥C5 collapsed versions f(*i(jl;fl).

(k

T3 Select as the best collapsed version, that f(*z.j)fl) for which d(f®, f(*z.g.’;*l)) is minimized. Label

this best collapsed version by f*(+—1),
T4 Evaluate the posterior probability

P, (k) = Pr{d(f®, ;1) < ¢ | data }.



T5 If P., (k) > a then replace f*) by f*(*~1) and repeat from T2 with k reduced by 1.

A last checking step T6 which re-fits the mixture with the final value of k can also be implemented.

The test procedure avoids the non-identifiability problem where apparently different combinations of
parameter values in a k component model actually identify the same mixture with £ — 1 components.

However several aspects of the test procedure need discussion:
(i) The choice of d(,-), the distance measure.
(ii) The precise method of constructing the collapsed distribution f*(*~1).
(iii) The choice of the criteria parameters: ¢y, @ and ky.

We discuss each of these in the following sections.

2.2 The Kullback-Leibler Distance d

As has been suggested by Mengersen and Robert (1996), the KL distance is one possible choice for the
distance, d used in step T2 of the test procedure. The Kullback-Leibler distance between two densities

f and g is defined as

_ @)

where S(h) is the support of the density h, that is S(h) = {z : h(z) > 0}. The distance d(f, g) is always
non-negative, see for example, Rao (1973, p59). If the supports of f and g are the same, one simply

writes

d(f,9) = /f(:c) log %dm.

We use the distance d(f*), f*(*=1)) rather than d(f**=1 f(*)) putting the more general model as
the first argument. Although the supports of f) and f*(*~1) are same, f(¥) is the more general model

since the parameter space for f*(*=1) is a subset of the parameter space for f).

In general it is not possible to compute the KL distance d(f*), f*(*=1)) as defined by (2) analyti-
cally. Mengersen and Robert (1996) use a Laplace approximation for this in some special cases. The
approximation they obtained was for the inverted distance d(f*("), f)) where f*(1) was chosen to be

a univariate normal distribution and f® was the mixture of two univariate normal distributions.

We adopt the following approach in calculating d(-,-). We have

k
" AIE)
a(fo, 1)):;%/ Tito o8 gy

Each integral in the summation can be carried out using numerical quadrature. In our version we used
the routine given by Forsythe et al. (1977). The routine is an adaptive method, based on the Newton-

Cotes 8-panel formula, that repeatedly checks for convergence of the integral in subintervals, refining



the quadrature by adding additional points to subintervals where the estimate of error is larger than the
selected allowed tolerance. The routine is thus well suited to evaluations involving mixture densities,
with peaks in different places. For multidimensional integration the routine was used recursively. For

example, a two dimensional integral was evaluated by calling the routine to evaluate the integral in the

//f(ivlawz)dmdxz :/g(xz)d.’l?2.

and using a recursive call to the routine to evaluate the integrand g(z2) = [ f(z1,22)dz; within the

one dimensional form

first call.

Though evaluation of d(f®*), f*(*=1) by quadrature is straightforward, it is nevertheless an addi-
tional computational expense. In the next section we suggest an alternative weighted KL distance,
d*(f, g), that can be used instead of the KL distance. In the present context, this alternative distance
is much easier to calculate. Our numerical experience is that use of this distance is equally satisfactory,

and so can be recommended as it is in general much easier to implement.

2.3 The Weighted Kullback-Leibler Distance d*

Let w; be a set of fixed weights. Then two k component mixture models with these same weights can
be compared using the following distance measure. We let f(*) be as defined previously, and let g¢*)

be a k component mixture density with the same mixing weights as in f(*):

9" Z w;g;(|65)- 3)

where the components of g; may be different from the f; and may possibly depend on different param-

eters 0}‘ . Then

f(k g(k) Zw] f]7g] (4)

defines a distance measure between f(Fand ¢(¥). For fixed weights, this measure clearly enjoys the
same properties as the KL distance being simply a weighted sum of KL distances d(f;,g;) between

corresponding components. We shall refer to this as the weighted KL distance.

In our problem of determining %, the behavior of d(f,g) and d*(f, g) is very similar. The following



formula shows how they are related. We have,

®)
d(FH), gy = / f(k)(x)log]gc(k)ggd

)

k
fi(z) gj(z) f* (m)]
= w; fi(x)lo dz
/2 shteos | L
k
9;(z) f(k)(x)]
= w; ,9i) + w; / z)lo [ dx
Z jd(f5,95) Z i | fi(z)log 7i(@) g™ ()
k . ®) (z)
= d*(f®,g®) + w-/ (2) 1o [g] (2) f ]d:v. 5
The second term in (5) is non-positive. This follows immediately using Inz < z — 1 (for z > 0). We
have
i(z) F*) (2 k i (@) O (2
1w] [ f;()log [fv Ewg f()c ( )] dr < Y wj [ fi(x) [i—ﬁw% g('ﬂgx; - 1] dx
J % (z)] dz — 1 =0.
Thus

d(f®, g™y < a*(f®, g*.

We propose that this weighted KL distance be used in our procedure for testing whether to merge
components. Often it is easy to calculate d*(f;, g;). For example, if both the densities f; and g; belong
to the exponential family then d*(f;, g;) has a simple form. Thus d*(f, g) often can be obtained explicitly
when d(f, g) cannot. In the context of our proposed collapsing method, the distance d*(f*), g(%)) takes

a particularly simple form. We give a number of examples in later sections.

2.4 Collapsing f®)

Let f(12) U be a collapsed version of f*) which we assume is obtained by collapsing the first two

components of f(¥). To calculate ax(f (k) f(*l(f) 1)), we view the collapsed version as being a special case
of a k component mixture, i.e. ¢¥) = f;l(f)_l). In the collapsing process the parameters of f(*) are

regarded as fixed. The collapsed version is thus defined to be

g(k) *(k Y= Zwafa $|9*

with the condition that 07 = 63 = 6*, (0" is yet to be determined) and 6} = §; for j = 3,...,k. Thus

g9;(2|65) = f;(x|6;) for j = 3,...,k, and d*(f®, f("‘l(f)*l)) reduces to

2
9, i) = D wid(f(165), £(16%)
j—l

= Zw]El ;'zg (6)



where E; denotes the expectation under the density f(z|6;) and

2
, [i(X165)
arg § min E w; EjIn 2=—22

6*
fi(X16)

i=1

2
= arg mgaxijEjlnfj(XW)

j=1

The above defines the collapsed version obtained from merging the first two components of f(*).

The best collapsed version, denoted by f*(*~1  is simply the one that minimizes d(f*), f(*z.j’;_l)) over

all 4,7,i # j i.e. the best out of all *Cy possible collapsed versions of f().

Richardson and Green (1997) provide an intuitive moment matching method for collapsing two
components. For their normal mixture examples our method produces similar results. However, they

did not perform the last minimization over the *C, possibilities.

2.5 Choice of ¢; and k

We reduce k by 1 if d(f*), f**~1) is small. A large distance emphasizes that the collapsing cannot
be done without significantly deteriorating the fit. The Bayesian solution is to evaluate the posterior

probability
Po, (k) = Pr{d(f®), f**=D) < ¢ | data }.

A simple decision rule is to reduce k& by 1 if the above posterior probability is high, (greater than
a = 0.5, for example). The formula (6) shows that the minimum distance d(f*), f*(*=1)) is a function
of the parameters in f(¥) only. Hence, to calculate P,, (k) one needs to obtain the posterior density of

the parameters in f(*) only.

The quantity ¢ needs to be set to define the boundaries of the indifference zone for the k and
k — 1 component mixtures. We avoid being too prescriptive as a sensible choice is problem dependent.
Obviously, the proposed method is sensitive to the choice of ci. A large value of ¢ will select a smaller
number of components and a smaller value of ¢;, will select a higher number of components. In the
practical examples presented in Section 4, we study the sensitivity. In effect, the freedom in choosing ¢y
is somewhat similar to the procedures using the Bayes factor. In the latter case one needs to compare

the value of the Bayes factor using a calibration table and decide how large is the evidence.

An informed choice of ¢ can be made before fitting the mixture distributions. We only illustrate
with the following example. To fix ideas, suppose that it is desired to compare a mixture of two normal
distributions with a standard normal distribution. (More details are given in Section 3.1). For the
components of the mixture we assume that the standard deviations are the same (o) and the mixing

proportion is 50%. The two mean parameters are taken as —6 and 6. The parameters in the mixture



(0 and &) are chosen so as to have mean zero and variance 1. This is to match the mean and variance

of mixture with those of the standard normal distribution.

We are then interested to see how large the means should be in order to achieve a specific value of
the weighted KL distance d*. Figure 1 plots the densities of the standard normal distribution and the
mixture distributions corresponding to different values of d*. From this graph, an experimenter can
choose the value of ¢z according to how far departure from the standard normal distribution s/he is
willing to allow. For example, a value of ¢ between 0.1 and 0.3 does not let the mixture distribution
assume bimodal shape and is therefore little bit small. Based on these considerations we recommend

co = 0.5 as a reasonable choice.

It is not desirable to choose one specific value of ¢ for every problem. This is because neither
distances (2) or (6) are invariant under different distributions. Consequently, the choice of ¢, is problem
specific and should be guided by the required size of the indifference zone between f*) and its collapsed

version. More discussion regarding the choice of ¢, is provided in Section 5.

The maximum value of k denoted by ko should be chosen large enough so that f(°) is able to

capture all the variations present in the data.

3 Examples: Theoretical Development

When the component distributions are from the exponential family we can often obtain expressions
for the weighted KL distance in closed form. We illustrate with the class of multivariate normal and
gamma distributions. In both cases we shall assume that the weight vector w is given a symmetric

Dirichlet prior, D(d, ... ,d) where § is a known positive number.

3.1 Mixture of Multivariate Normals
3.1.1 Bayesian Formulation

Assume that X;,...,X,, is a random sample from the k-component mixture of p-variate normal dis-
tributions. Let ; be the mean and ¥; be the covariance matrix of the jth component (j =1,... k).

Let Q; = % '. The density f; of the jth mixture component is,

1

[i(x]0,%;) = Np(x;0;,%;) = an

12572 exp {~1(x — 6,)"3; (x - 6)},

where |A| is the determinant of a matrix A. The full mixture density is given by

k
FPE) =D wif(216;,%5). (7)

j=1

Now we specify the prior distribution for the parameters in the mixture following Richardson and



Green (1997) and Stephens (2000). The mean vector 6; is assigned the independent normal prior
distribution

0]' ~ Np(ga K‘_l)

where £ is a p-vector and k is a positive definite matrix. In our examples we choose each component
of £ to be the mid-point of the corresponding component of the p-dimensional data and & is chosen to
be a diagonal matrix with elements equal to 0.1 times the inverse squared range of the corresponding

data component. As in Richardson and Green (1997) we keep & fixed throughout.

The inverse covariance magtrix Ej_l is assigned the independent conjugate Wishart prior distribution
as follows:

5= Q5 ~ Wp(2a,28)

where 2q is the assumed prior degrees of freedom (> p) and 3 is a positive definite matrix. The choice
2a. = p corresponds to the case that the prior is thought to be formed of p observations; and in p
dimensional case this corresponds to weak prior information. In our example we have implemented this

choice. The choice of f is discussed later.
We say that Y has the Wishart distribution W),(m, R) if its density is proportional to
|R|m/2|y|%(m—p—l)e—%tr(Ry)
if y is a pxp positive definite matrix. (Here tr(A) is the trace of a matrix A.) This is the parameterization
used by for example, Anderson (1984, p249) and the BUGS (Spiegelhalter et al., 1996) software. To choose

the hyper-parameters, we note that E(Y) = (R/m) ! and E(Y 1) = R/(m —p—1) if the expectations

exist.

We may assume the following hyper-prior for 3,
/B ~ WP(297 2h)

where g > 0 and h is a positive definite matrix. Now the quantities g and h should be chosen sensibly.

Note that E(Q,|8) = a 87!. Using the iterated expectations E(Q,) = EE(Q;|8), we now have E(Q;) =

2h
29—p—1"

Q In order to match the conditional and un-conditional expectations we may choose 2g = p+ 3

and take S~ = h when 3 is kept fixed. In fact we distinguish between two cases: one treats  random
and assigns the above hyper-prior distribution and the other keeps 3 fixed. Following Stephens (2000)
we take h to be 100 x g/al where I is the identity matrix.

3.1.2 Distance
Suppose that g;(z|07,A;) = Np(x;07,A;) and

’ J2°

k
9P (x) = > w;g; (65, Ay).
j=1

10



Lemma 1

The distance (4) between f*) and g'*) is given by,

k
2d*(f%,9®) =3 " w; {log |A;Z; | + tr(A;1E;) —p+ (8; — 05)TA;1(0; — 07)} . (8)

Jj=1

Let the first two components of g*) have the common parameters 8* and A and all other components
have the parameters equal to the corresponding parameters of f(¥). That is 85 = 65 = 6* and
A =A=Aand 0] =0;,A; =%,;,i =3,...,k. Consequently, g®) is the mixture of k— 1 components.
Note that the mixing weights wy,... ,w; are unchanged.

Lemma 2

The choices of 8* and A which minimize the distance (8) between f*) and the collapsed g‘*) as described

above are given by

0* — w161 + w20,
w1 + w2
and
A = m {lel + wo X + w1(01 — 0*)(01 — 0*)T + 'LU2(02 — 0*)(02 — 0*)T}
= m {’w121 + wy Xy + wuil_’_w£2 (6, — 65)(01 — 02)T} .

The minimum distance is given by,

2
* — _ wiw _
2 d*(f®,g®) =3 w; {log|AT; Y| + tr(A'S;) — p} + m(m —0:)TA (0, — 0,).
j=1

This matches exactly with Lemma 2.1 in Mengersen and Robert (1996). Their Lemma 2.2 is a special

case of our Lemma 1.

3.2 Mixture of Gamma Distributions
3.2.1 Bayesian Formulation

Suppose that X is a mixture of gamma random variables and the jth component in the mixture has the

density f;(z|v,6;). This gamma distribution has mean v/8;. Thus we have f*)(z) = 2521 wj fi(z|v, 6;).

Following Dey et al. (1995) we assume a I'(a, 3) prior for v, and independent I'(§, k) prior for 6;. Fur-

ther, all the hyper-parameters a, 3, &, k are assumed to be known.

3.2.2 Distance

We first obtain the distance between f(*) and g(¥) where the jth component of g(¥) is T'(v,6}).

11



Lemma 3

The distance (4) between f*) and g'*) is given by,

k
0. o*
d*(f®,g®) = vy {log (0—]> +0—?—1}- (9)
j=1 J J

Let the first two components of g(¥) have the common parameter 8* and all other components have
the parameters equal to the corresponding parameters of f(*). That is 87 = 65 = 6* and 0; =6;,i =
3,..., k. Consequently, g(*) is the mixture of k—1 components. Note that the mixing weights wy, . .. , wy

are unchanged.

Lemma 4
The choice of * which minimize the distance (9) between f*) and the collapsed g*) as described above

is given by
- w1 + wa
w1 /01 + w2 /0y

The minimum distance is given by,

d*(f(k),g(k)) = v[w; log 01 + w2 log s — (w1 + w2) log6*].

4 Examples: Numerical Illustrations

4.1 Preliminaries

In mixture problems it is well known that the MCMC schemes experience slow convergence. We do not
focus on convergence of the MCMC methods here. In all the examples given below we have used the
Gibbs sampler. In each case we discarded first 100,000 iterates and used the next 100,000 iterates to

make inference.

Bayes procedures including the Bayes factor are generally sensitive to the choice of the hyper-
parameter values. For the examples based on the univariate normal distribution, we have implemented
hyper-parameter values used by Richardson and Green (1997) so that we can compare their results
with ours for the same prior specification. For the multivariate normal example we have used the
hyper-parameter values similar to the ones adopted by Stephens (2000). Section 3.1 provides additional

justifications for choosing the specific values.

A further problem in mixture models is in the non-identifiability of individual components. Here we
have adopted the general idea of post-processing MCMC output by re-labeling, see e.g. Richardson and
Green (1997), although other possibilities exist, see for example Celeux et al. (2000). In the univariate

12



examples, we re-label the mixture components according to the order of the value of a parameter of

interest. In the multi-dimensional case we re-label using the value of the first component mean.

4.2 Univariate Normal Mixtures

4.2.1 A Simulated Example

Our first example compares the behavior of our method with that using the Bayes factor method of
identifying the posterior probability. We generate data from a two component normal mixture model
with equal mixing proportion. The variances of the components are assumed to be 1 while the two
means are set at 0 and 3. These choices ensure that the resulting model is indeed a two component
mixture model. Starting with a sample of size 10, we run the simulation experiment with an increment
of 5 further samples until 250 samples. We calculate the posterior probability of the two component
model using the reversible jump MCMC method as described in Richardson and Green (1997) using ko

to be 5. The same value of kg is used for the proposed method.

In each simulation we also calculate the posterior probabilities P, (k) for k = 5,4,3 and 2 using the
weighted KL, d*, distance. Since the true model is a two component one we expect P, (k) to be high
for k = 5,4 and 3 and low for k = 2 for reasonable choices of ¢;. Guided by the example in Section 2.5,

we take ¢, = 0.5 for all k.

The posterior probabilities are plotted in Figure 2. The posterior probability of collapsing the
fitted three component model rapidly rises to one as expected. The collapsing probabilities for the
4 and 5 component models were all calculated to be one. The graph also shows that using about
150 simulated data points from the two component model the proposed distance method reaches the
correct decision of not to collapse the components of the fitted two component model. The posterior
probability (corresponding to the Bayes factor) of the two component model increases slowly as sample
size increases. The simulation experiment has been repeated and replicated many times to see the

sensitivity. We report our findings below.

e Exact (d) versus weighted distance (d*): The same model choice conclusions are arrived
using the exact KL distance d. However, here the ¢; values are to be set much lower than the
choice of 0.5 used previously, as expected. Thus similar discrimination can be achieved with either

distance. See the next example where we report both the exact and weighted distance.

e Replication: The simulation experiment has been replicated 10 times for fixed sample sizes of
100, 150 and 200. We observed insignificant changes in the posterior probabilities which are not

worth reporting.

e ko: The posterior model probability (corresponding to the Bayes factor) reduces if kg is increased.

However, the posterior probabilities P, (k) do not change when ko is increased from 5 to 10.

13



Arbitrarily large values may cause problems when only a small number of data points are to be

modeled, perhaps due to poor MCMC estimation.

Local minima: A referee has expressed concern that the proposed method may reach a local
minima and as a result would select the wrong model. In our experience this is not the case.
However, to give some added reassurance on this point we extend the simulation experiment.
We simulate n = 200 random samples from a two component normal mixture with components
having unit standard deviation and means 0 and . We report the results for two values of § = 2
and 3. The mixing proportion is kept fixed at 50%. We compute the posterior distribution
of the distance between a fully fitted three component mixture and its collapsed two component
version. We compare the above posterior distribution with that of the posterior distribution of the
distance between a collapsed three and its collapsed two component version. The collapsed three
component mixture was first arrived at from fitting a full four component mixture to the data.
These two posterior distributions are now compared since using either of these two distributions

our method decides between a three and two component mixture model for the data.

If the method were to reach a local minima then the two posterior distributions will be quite
different and as a result different conclusions on the number of components will be arrived by
the two distances. In Figure 3 we plot the kernel density estimates of the distances for § = 2
and 3. The corresponding true mixture density is plotted in the left panel. It is clear from the
figure that there is no difference at all between the two distributions and the same conclusion is
reached using either distributions. There would have been significant differences between the two
distributions if the method were to reach a ‘local minima’ while collapsing from the fitted four

component mixture to the true two component mixture.

Figure 3 also reveals the possible effect of the choice of ¢;. The same conclusion of collapsing to
a two component mixture is reached for any value of ¢ greater than 0.5. From the numerical
experimentation in Section 2.5 we know that values of the weighted distance greater than 0.5

enable the mixture to become multimodal.

4.2.2 Enzyme Example

We implement our methodology for the enzyme data set discussed in Richardson and Green (1997). The

posterior probability distribution of &k from their method is given in Table 1. The posterior distribution

of k does not provide strong evidence for any single value of k but generally suggests between 3-5

components.

In Figure 4 we plot the posterior densities of the distances d(f*), f**=1)) and d@*(f®, f*(*=1) for

k = 2,3 and 4. The densities for the KL and weighted KL distances are plotted using the same plotting

symbol. Obviously, the one on the right hand side is the density of the weighted KL distance in each

case. As expected, the distribution of the distance d(f*), f*(*=1)) shifts towards 0 for increasing values
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k 2 3 4 5 | >6
m(kly) | 0.047 | 0.343 | 0.307 | 0.200 | 0.103

Table 1: Posterior distribution of k for the enzyme data example.

of k.

Consider the graphs from the k = 4 model. The values of d(f*, f*®)) are very close to zero. In
fact, the mean and median of d(f¥, f*()) are 0.012 and 0.009, respectively. Hence it is concluded
that the data does not support the k¥ = 4 model. To compare the k = 3 versus the k¥ = 2 model we
note the densities plotted as dotted lines. The mean and median of d(f®), f*()) are 0.028 and 0.026,

respectively. This provides some positive evidence for the k = 3 model.

The two densities on the far right (solid lines) are for the ¥ = 2 case. Since the location of the
distance here is very high, one clearly rejects the & = 1 model. Note the similarities between the

densities of the KL and weighted KL distances.

The foregoing discussion suggests that a three component model is quite adequate for the data.
However, a two component model is not too bad an approximation for the three component model. A
more precise statement can be made by choosing a particular value of ¢;. For example, if ¢3 is chosen

as 0.025 then Py g25(3) = 0.47. Since this is not higher than 0.5, one selects the k = 2 model.

The effect of collapsing as opposed to fully fitting the model each time k is reduced, is illustrated in
Figure 5. The plotted predictive densities are for the fully fitted two component model and the collapsed
two component model obtained by collapsing the three component model. The plot does not show any
significant difference between the two densities. This illustrates the discussion in the introduction that

collapsed models will retain the essential character of fully fitted models.

4.3 Mixture of Multivariate Normals

Our next example illustrates the method applied to multivariate data. We consider the well known Old
Faithful data. The data consist of 298 eruptions of the Old Faithful geyser in the Yellowstone National
Park. Each observation has two components (p = 2): duration (in minutes) of the previous eruption
and waiting time before the next eruption. A scatter plot of this bivariate data shows the possibility
of two or more modes. Strictly speaking, there is time dependence between the observations, see for
example Azzalini and Bowman (1990). However, we only use it to illustrate our technique as has been

done by Stephens (2000).

The kernel density estimates of the distances are given in Figure 6. Observe that the distribution
of the weighted KL distance gets closer to the distribution of the KL distance as k increases. By
choosing ¢3 = 0.1, we see that Py 1(3) = 0.37. Since this probability is not high we are not able reject
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the & = 3 model for this choice of ¢3. We do not attempt fitting mixtures with a larger number of
components. Our experience suggests that in order to fit a larger number of components more precise

prior distributions are required. However, our analysis here is based largely on vague prior distributions.

We also study the sensitivity of the distance measure to changes in prior distribution in this example.
Figure 7 reports the kernel density estimates of the KL and weighted KL distances for the random and
fixed 8 models. The plot shows that the proposed method is not very sensitive to changes resulting

from prior distributions on the inverse covariance matrices.

4.4 Gamma Mixture Example

We consider a data set arising from geological measurements. The measurements are known to be
mixtures of (non-negative) skewed distributions with component distributions arising from different
geological components. An important problem thus is to estimate the number of components in the

mixture.

The data set consist of 200 observations and there is a heavy tail in the observed data, see Figure 8.
Here we attempt our mixture of gamma distributions and then determine the number of components.
Various hyper-parameters are chosen as follows. The hyper-parameters a and 3 are set at unity. The
parameter £ is set to 2 and k is set at the mean of the data. These choices lead to the prior predictive

mean being equal to the mean of the data.

In this example we only use the weighted KL distance to determine the number of components since
the distance itself is very small when comparing the f®) versus f*). Also the weighted KL distance
can be calculated using the general purpose software BUGS without much additional programming effort.

The BUGS code and the data set can be obtained from the authors.

The posterior densities of the weighted KL distance (d*) for ¥ = 2 and 3 are plotted in Figure 9.
We see that the two component gamma mixture model is better than the one component model. The
estimate of Pp1(2) is 0.25. On the other hand the three component model does not provide a much

better fit than the two component model. Here Py 1(3) is 0.997.

5 Discussion

This paper provides an easy to implement Bayesian method for determining the number of components
in finite mixture densities. A weighted KL distance, an alternative to the KL distance, between a k
component mixture and its collapsed £ — 1 component version has been developed in the paper. Often
the weighted KL distance is easy to calculate and as a result univariate mixtures of standard exponential
family distributions can be compared using the current version of BUGS. Accurate versions of the KL

distance using numerical quadrature formula have been suggested and illustrated.
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The proposed procedure can be applied even under non-informative prior distributions which are
often improper. The Bayes factors are not interpretable for improper prior distributions. Moreover,
the proposed method is consistent, see the simulation example. A theoretical proof of consistency has

been submitted elsewhere for publication.

The collapsing scheme developed in the paper can also be used as a method when implementing the
reversible jump MCMC. Since our scheme is based on minimizing the weighted KL distance d* it may

lead to a more efficient reversible jump MCMC, although we have not checked this empirically.

The methodology presented here does not necessarily converge to a local minima. In the current
formulation it is of interest to see if two components in a mixture model can be collapsed without
worsening the fit. In the next stage the procedure searches for the pair of components (among the
k(Cy possibilities) collapsing of which will produce the least discrepancy in fit. Finally, an appropriate
Bayesian test of hypothesis decides whether to accept the proposed collapse. Thus the procedure does
not end up finding a local minimum since the components to be collapsed are searched globally and a

Bayesian test is used at the end.

Finally, some discussion regarding the constants ci is appropriate. As suggested in the paper, the
weighted KL distance should be calibrated between typical mixtures to be fitted to the data. A graphical
diagnostics such as Figure 1 can be used to find guideline values of ¢x. In addition, one can plot the
posterior densities of the distance for comparing the mixture models as has been done in Figure 6.
Relative locations of the posterior distributions will provide insights into the choice of ¢, and possible
effect of choosing particular values. As a result such a plot provides an easy way to study the sensitivity

of the method with respect to the choice of ¢y.
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Figure 1: Examples of normal mixture densities corresponding to different values of the distance. The solid
line is for the standard normal distribution. The weighted distance (d*) increases as the height of the densities
at zero decreases. There are five mixture densities corresponding to d* equal to 0.1, 0.2, 0.3, 0.4 and 0.5.
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Figure 2: The probabilities of choosing the correct model (which has two components).
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Solid line is the

posterior probability of the two component model calculated using the reversible jump method. The dotted line

is Py.5(3) while the broken line is Py 5(2) using the weighted distance d*.
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Figure 3: The true mixture density (left column) and the kernel density estimates (right column) of the posterior
distributions of the distances.
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Figure 4: Kernel density estimates of the posterior distribution of the exact distance (d) and the weighted

distance (d*) for the enzyme data example. The density curve for d* is on the right (with the same plotting
symbol) in each case.
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Figure 5: Predictive densities for the enzyme example.
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Figure 6: Kernel density estimates of the posterior distribution of the exact distance (d) and the weighted
distance (d*) for the Old Faithful data example. The density curve for d* is on the right (with the same plotting
symbol) in each case.
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Figure 7: Kernel density estimates of the posterior distribution of the exact distance (d) and the weighted
distance d* for the Old Faithful data example. This plot shows the sensitivity of the distance measure for
random and fixed 8 model.
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Figure 8: Histogram of the data for mixture of gamma example.
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Figure 9: Kernel density estimates of the posterior distribution of the weighted distance d* for the mixture of
gamma example. Solid line is for the 2 vs. 1 case and the broken line is for the 3 vs. 2 case.
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